Reaction Front Evolution during Electrochemical Lithiation of Crystalline Silicon Nanopillars

被引:17
作者
Lee, Seok Woo [1 ]
Berla, Lucas A. [1 ]
McDowell, Matthew T. [1 ]
Nix, William D. [1 ]
Cui, Yi [1 ,2 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
基金
美国国家科学基金会;
关键词
anisotropic expansion; electrochemistry; lithium-ion batteries; nanostructures; reaction mechanisms; ION BATTERY ANODES; LITHIUM; SIZE; NANOWIRES; FRACTURE; LI; PARTICLES; INSERTION; ELECTRODE;
D O I
10.1002/ijch.201200077
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The high theoretical specific capacity of Si as an anode material is attractive in lithium-ion batteries, although the issues caused by large volume changes during cycling have been a major challenge. Efforts have been devoted to understanding how diffusion-induced stresses cause fracture, but recent observations of anisotropic volume expansion in single-crystalline Si nanostructures require new theoretical considerations of expansion behavior during lithiation. Further experimental investigation is also necessary to better understand the anisotropy of the lithiation process. Here, we present a method to reveal the crystalline core of partially lithiated Si nanopillars with three different crystallographic orientations by using methanol to dissolve the Li atoms from the amorphous Li-Si alloy. The exposed crystalline cores have flat {110} surfaces at the pillar sidewalls; these surfaces represent the position of the reaction front between the crystalline core and the amorphous Li-Si alloy. It was also found that an amorphous Si structure remained on the flat surfaces of the crystalline core after dissolution of the Li, which was presumed to be caused by the accumulation of Si atoms left over from the removal of Li from the Li-Si alloy.
引用
收藏
页码:1118 / 1123
页数:6
相关论文
共 33 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   ANISOTROPIC ETCHING OF SILICON [J].
BEAN, KE .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1978, 25 (10) :1185-1193
[3]   Colossal reversible volume changes in lithium alloys [J].
Beaulieu, LY ;
Eberman, KW ;
Turner, RL ;
Krause, LJ ;
Dahn, JR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (09) :A137-A140
[4]   Cohesive modeling of crack nucleation in a cylindrical electrode under axisymmetric diffusion induced stresses [J].
Bhandakkar, Tanmay K. ;
Gao, Huajian .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (16-17) :2304-2309
[5]   PREPARATION OF MONODISPERSE SILICA PARTICLES - CONTROL OF SIZE AND MASS FRACTION [J].
BOGUSH, GH ;
TRACY, MA ;
ZUKOSKI, CF .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1988, 104 (01) :95-106
[6]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[7]   CHEMICAL POLISH AND ETCH FOR LITHIUM, SODIUM AND POTASSIUM [J].
CASTELLANO, RN ;
SCHMIDT, PH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1971, 118 (04) :653-+
[8]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[9]   The First-Cycle Electrochemical Lithiation of Crystalline Ge: Dopant and Orientation Dependence and Comparison with Si [J].
Chan, Maria K. Y. ;
Long, Brandon R. ;
Gewirth, Andrew A. ;
Greeley, Jeffrey P. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (24) :3092-3095
[10]   Diffusion-Induced Stress, Interfacial Charge Transfer, and Criteria for Avoiding Crack Initiation of Electrode Particles [J].
Cheng, Yang-Tse ;
Verbrugge, Mark W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (04) :A508-A516