Solution formation of Holliday junctions in inverted-repeat DNA sequences

被引:16
作者
Hays, FA
Schirf, V
Ho, PS
Demeler, B
机构
[1] Oregon State Univ, Dept Biochem & Biophys, Corvallis, OR 97331 USA
[2] Univ Texas, Hlth Sci Ctr, Dept Biochem, San Antonio, TX 78249 USA
关键词
D O I
10.1021/bi052129x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The structure of Holliday junctions has now been well characterized at the atomic level through single-crystal X-ray diffraction in symmetric (inverted-repeat) DNA sequences. At issue, however, is whether the formation of these four-stranded complexes in solution is truly sequence dependent in the manner proposed or is an artifact of the crystallization process and, therefore, has no relevance to the behavior of this central intermediate in homologous recombination and recombination-dependent cellular processes. Here, we apply analytical ultracentrifugation to demonstrate that the sequence d(CCGGTACCGG), which crystallizes in the stacked-X form of the junction, assembles into four-stranded junctions in solution in a manner that is dependent on the DNA and cation concentrations, with an equilibrium established between the junction and duplex forms at 100-200 mu M DNA duplex. In contrast, the sequence d(CCGCTAGCGG), which has been crystallized as B-DNA, is seen to adopt only the double-helical form at all DNA and salt concentrations that were tested. Thus, the ACC trinucleotide core is now shown to be important for the formation of Holliday junctions in both crystals and in solution and can be estimated to contribute approximately -4 kcal/mol to stabilizing this recombination intermediate in inverted-repeat sequences.
引用
收藏
页码:2467 / 2471
页数:5
相关论文
共 28 条
[1]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[2]  
BRUNGER AT, 1992, XPLOR VERSION 3 1 SY
[3]  
CANTOR CR, 1980, BIOPHYSICAL CHEM, V2
[4]   Calculation of hydrodynamic properties of globular proteins from their atomic-level structure [J].
de la Torre, JG ;
Huertas, ML ;
Carrasco, B .
BIOPHYSICAL JOURNAL, 2000, 78 (02) :719-730
[5]   Determination of molecular parameters by fitting sedimentation data to finite-element solutions of the Lamm equation [J].
Demeler, B ;
Saber, H .
BIOPHYSICAL JOURNAL, 1998, 74 (01) :444-454
[6]   Sedimentation velocity analysis of highly heterogeneous systems [J].
Demeler, B ;
van Holde, KE .
ANALYTICAL BIOCHEMISTRY, 2004, 335 (02) :279-288
[7]   THE STRUCTURE OF THE HOLLIDAY JUNCTION, AND ITS RESOLUTION [J].
DUCKETT, DR ;
MURCHIE, AIH ;
DIEKMANN, S ;
VONKITZING, E ;
KEMPER, B ;
LILLEY, DMJ .
CELL, 1988, 55 (01) :79-89
[8]   The Holliday junction in an inverted repeat DNA sequence: Sequence effects on the structure of four-way junctions [J].
Eichman, BF ;
Vargason, JM ;
Mooers, BHM ;
Ho, PS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (08) :3971-3976
[9]   Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination [J].
Gopaul, DN ;
Guo, F ;
Van Duyne, GD .
EMBO JOURNAL, 1998, 17 (14) :4175-4187
[10]   How sequence defines structure: A crystallographic map of DNA structure and conformation [J].
Hays, FA ;
Teegarden, A ;
Jones, ZJR ;
Harms, M ;
Raup, D ;
Watson, J ;
Cavaliere, E ;
Ho, PS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (20) :7157-7162