Reconstitution of an E box-binding Myc:Max complex with recombinant full-length proteins expressed in Escherichia coli

被引:22
作者
Farina, A [1 ]
Faiola, F [1 ]
Martinez, E [1 ]
机构
[1] Univ Calif Riverside, Dept Biochem, Riverside, CA 92521 USA
关键词
recombinant human Myc and Max proteins; bacterial expression; reconstitution of Myc : Max heterodimers; sequence-specific DNA-binding;
D O I
10.1016/j.pep.2003.11.021
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The c-Myc oncoprotein (Myc) is a DNA sequence-specific transcription factor that regulates transcription of a wide variety of genes involved in the control of cell growth, proliferation, differentiation, and apoptosis and its deregulated expression is implicated in many types of human cancer. Myc has an N-terminal transcription activation domain (TAD) that interacts with various co-activators and a C-terminal basic-helix-loop-helix-leucine zipper (bHLHZip) domain required for E box-specific DNA-binding and heterodimerization with its obligatory bHLHZip protein partner Max. The analysis of the mechanisms by which the Myc:Max complex regulates transcription at the molecular level in vitro has been hampered by the difficulty in obtaining highly pure recombinant Myc:Max heterodimers that contain full-length Myc with its complete TAD domain and that have sequence-specific DNA-binding activity. Here, we describe a simple method to reconstitute recombinant Myc:Max complexes from highly purified full-length proteins expressed in Escherichia coli that are soluble and highly active in E box-specific DNA-binding in vitro. The reconstituted Myc:Max complexes are stable and lack Max:Max homodimers. This procedure should facilitate the characterization of the DNA-binding and transcription activation functions of full-length Myc:Max complexes in vitro and in particular the role of Myc TAD-interacting cofactors and Myc:Max post-translational modifications. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:215 / 222
页数:8
相关论文
共 51 条
[1]   Function of the c-Myc oncoprotein in chromatin remodeling and transcription [J].
Amati, B ;
Frank, SR ;
Donjerkovic, D ;
Taubert, S .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2001, 1471 (03) :M135-M145
[2]   c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover [J].
Bahram, F ;
von der Lehr, N ;
Cetinkaya, C ;
Larsson, LG .
BLOOD, 2000, 95 (06) :2104-2110
[3]   CASEIN KINASE-II INHIBITS THE DNA-BINDING ACTIVITY OF MAX HOMODIMERS BUT NOT MYC MAX HETERODIMERS [J].
BERBERICH, SJ ;
COLE, MD .
GENES & DEVELOPMENT, 1992, 6 (02) :166-176
[4]   SEQUENCE-SPECIFIC DNA-BINDING BY THE C-MYC PROTEIN [J].
BLACKWELL, TK ;
KRETZNER, L ;
BLACKWOOD, EM ;
EISENMAN, RN ;
WEINTRAUB, H .
SCIENCE, 1990, 250 (4984) :1149-1151
[5]   MAX - A HELIX-LOOP-HELIX ZIPPER PROTEIN THAT FORMS A SEQUENCE-SPECIFIC DNA-BINDING COMPLEX WITH MYC [J].
BLACKWOOD, EM ;
EISENMAN, RN .
SCIENCE, 1991, 251 (4998) :1211-1217
[6]   Regulation of cyclin D2 gene expression by the Myc/Max/Mad network:: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter [J].
Bouchard, C ;
Dittrich, O ;
Kiermaier, A ;
Dohmann, K ;
Menkel, A ;
Eilers, M ;
Lüscher, B .
GENES & DEVELOPMENT, 2001, 15 (16) :2042-2047
[7]   Ubiquitylation and destruction of endogenous c-MycS by the proteasome: Are Myc boxes dispensable? [J].
Chen, L ;
Smith, L ;
Accavitti-Loper, MA ;
Omura, S ;
Smith, JB .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2000, 374 (02) :306-312
[8]   GLYCOSYLATION OF THE C-MYC TRANSACTIVATION DOMAIN [J].
CHOU, TY ;
DANG, CV ;
HART, GW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4417-4421
[9]   C-MYC IS GLYCOSYLATED AT THREONINE-58, A KNOWN PHOSPHORYLATION SITE AND A MUTATIONAL HOT-SPOT IN LYMPHOMAS [J].
CHOU, TY ;
HART, GW ;
DANG, CV .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (32) :18961-18965
[10]   Genomic targets of the human c-Myc protein [J].
Fernandez, PC ;
Frank, SR ;
Wang, LQ ;
Schroeder, M ;
Liu, SX ;
Greene, J ;
Cocito, A ;
Amati, B .
GENES & DEVELOPMENT, 2003, 17 (09) :1115-1129