Role of cytochrome P450 in phospholipase A2-and arachidonic acid-mediated cytotoxicity

被引:77
作者
Caro, AA [1 ]
Cederbaum, AI [1 ]
机构
[1] CUNY Mt Sinai Sch Med, Dept Pharmacol & Biol Chem, New York, NY 10029 USA
关键词
phospholipase A2; cytochrome P450; arachidonic acid; oxidative stress; epoxyeicosatrienoic acids; hydroxyeicosatetraenoic acids; lipid hydroperoxides; lipid peroxidation; free radicals;
D O I
10.1016/j.freeradbiomed.2005.10.044
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phospholipases A2 (PLA2) comprise a set of extracellular and intracellular enzymes that catalyze the hydrolysis of the sn-2 fatty acyl bond of phospholipids to yield fatty acids and lysophospholipids. The PLA2 reaction is the primary pathway through which arachidonic acid (AA) is released from phospholipids. PLA2s have an important role in cellular death that occurs via necrosis or apoptosis. Several reports support the hypothesis that unesterified arachidonic acid in cells is a signal for the induction of apoptosis. However, most of the biological effects of arachidonic acid are attributable to its metabolism by mainly three different groups of enzymes: cytochromes P450, cyclooxygenases, and lipoxygenases. In this review we will focus on the role of cytochrome P450 in AA metabolism and toxicity. The major pathways of arachidonic acid metabolism catalyzed by cytochrome P450 generate metabolites that are subdivided into two groups: the epoxyeicosatrienoic acids, formed by CYP epoxygenases, and the arachidonic acid derivatives that are hydroxylated at or near the omega-terminus by CYP omega-oxidases. In addition, autoxidation of AA by cytochrome P450-derived reactive oxygen species produces lipid hydroperoxides as primary oxidation products. In some cellular models of toxicity, cytochrome P450 activity exacerbates PLA2- and AA-dependent injury, mainly through the production of oxygen radicals that promote lipid peroxidation or production of metabolites that alter Ca2+ homeostasis. In contrast, in other situations, cytochrome P450 metabolism of AA is protective, mainly by lowering levels of unesterified AA and by production of metabolites that activate antiapoptotic pathways. Several lines of evidence point to the combined action of phospholipase A2 and cytochrome P450 as central in the mechanism of cellular injury in several human diseases, such as alcoholic liver disease and myocardial reperfusion injury. Inhibition of specific PLA2 and cytochrome P450 isoforms may represent novel therapeutic strategies against these diseases. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:364 / 375
页数:12
相关论文
共 111 条
[1]   Cellular function of calcium-independent phospholipase A2 [J].
Akiba, S ;
Sato, T .
BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2004, 27 (08) :1174-1178
[2]   Arachidonic acid directly activates members of the mitogen-activated protein kinase superfamily in rabbit proximal tubule cells [J].
Alexander, LD ;
Cui, XL ;
Falck, JR ;
Douglas, JG .
KIDNEY INTERNATIONAL, 2001, 59 (06) :2039-2053
[3]   Neuroprotection and P4502C11 upregulation after experimental transient ischemic attack [J].
Alkayed, NJ ;
Goyagi, T ;
Joh, HD ;
Klaus, J ;
Harder, DR ;
Traystman, RJ ;
Hurn, PD .
STROKE, 2002, 33 (06) :1677-1684
[4]   Fas-induced arachidonic acid release is mediated by Ca2+-independent phospholipase A2 but not cytosolic phospholipase A2 which undergoes proteolytic inactivation [J].
Atsumi, G ;
Tajima, M ;
Hadano, A ;
Nakatani, Y ;
Murakami, M ;
Kudo, I .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (22) :13870-13877
[5]   STRESS signaling pathways that modulate cardiac myocyte apoptosis [J].
Baines, CP ;
Molkentin, JD .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2005, 38 (01) :47-62
[6]   Regulation and inhibition of phospholipase A2 [J].
Balsinde, J ;
Balboa, MA ;
Insel, PA ;
Dennis, EA .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1999, 39 :175-189
[7]   Phospholipase A2 regulation of arachidonic acid mobilization [J].
Balsinde, J ;
Winstead, MV ;
Dennis, EA .
FEBS LETTERS, 2002, 531 (01) :2-6
[8]   The versatility and universality of calcium signalling [J].
Berridge, MJ ;
Lipp, P ;
Bootman, MD .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2000, 1 (01) :11-21
[9]  
Boll M, 2001, Z NATURFORSCH C, V56, P111
[10]   Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A(2) [J].
Bonventre, JV ;
Huang, ZH ;
Taheri, MR ;
OLeary, E ;
Li, E ;
Moskowitz, MA ;
Sapirstein, A .
NATURE, 1997, 390 (6660) :622-625