Mathematical programming for data mining: Formulations and challenges

被引:132
作者
Bradley, PS
Fayyad, UM
Mangasarian, OL
机构
[1] Microsoft Res, Data Min & Explorat, Redmond, WA 98052 USA
[2] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
关键词
D O I
10.1287/ijoc.11.3.217
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article is intended to serve as an overview of a rapidly emerging research and applications area. In addition to providing a general overview, motivating the importance of data mining problems within the area of knowledge discovery in databases, our aim is to list some of the pressing research challenges, and outline opportunities for contributions by the optimization research communities. Towards these goals, we include formulations of the basic categories of data mining methods as optimization problems. We also provide examples of successful mathematical programming approaches to some data mining problems.
引用
收藏
页码:217 / 238
页数:22
相关论文
共 125 条
[1]   THE CONSTRAINED TOTAL LEAST-SQUARES TECHNIQUE AND ITS APPLICATIONS TO HARMONIC SUPERRESOLUTION [J].
ABATZOGLOU, TJ ;
MENDEL, JM ;
HARADA, GA .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (05) :1070-1087
[2]  
Agrawal R., 1996, Advances in Knowledge Discovery and Data Mining, P307
[3]  
Anderberg M. R., 1973, CLUSTER ANAL APPL, DOI [10.1016/C2013-0-06161-0, DOI 10.1016/C2013-0-06161-0]
[4]  
[Anonymous], 1987, DISCOVERING CAUSAL S
[5]  
[Anonymous], 1990, Report No
[6]  
BANK B, 1982, NONLINEAR PARAMETRIC
[7]  
Bennett K., 1993, OPTIM METHOD SOFTW, V3, P27
[8]  
Bennett K. P., 1993, Computational Optimization and Applications, V2, P207, DOI 10.1007/BF01299449
[9]  
Bennett K.P., 1992, Technical report
[10]  
BENNETT KP, 1992, OPTIMIZATION METHODS, V1, P23, DOI DOI 10.1080/10556789208805504