An experimentally supported model of the Bacillus subtilis global transcriptional regulatory network

被引:138
作者
Arrieta-Ortiz, Mario L. [1 ]
Hafemeister, Christoph [1 ]
Bate, Ashley Rose [1 ]
Chu, Timothy [1 ]
Greenfield, Alex [1 ]
Shuster, Bentley [1 ]
Barry, Samantha N. [1 ]
Gallitto, Matthew [1 ]
Liu, Brian [1 ]
Kacmarczyk, Thadeous [1 ]
Santoriello, Francis [1 ]
Chen, Jie [1 ]
Rodrigues, Christopher D. A. [2 ]
Sato, Tsutomu [3 ]
Rudner, David Z. [2 ]
Driks, Adam [4 ]
Bonneau, Richard [1 ,5 ,6 ]
Eichenberger, Patrick [1 ]
机构
[1] NYU, Dept Biol, Ctr Genom & Syst Biol, New York, NY 10003 USA
[2] Harvard Univ, Sch Med, Dept Microbiol & Immunobiol, Boston, MA USA
[3] Hosei Univ, Dept Frontier Biosci, Koganei, Tokyo 184, Japan
[4] Loyola Univ Chicago, Stritch Sch Med, Dept Microbiol & Immunol, Maywood, IL USA
[5] NYU, Courant Inst Math Sci, Dept Comp Sci, New York, NY 10012 USA
[6] Simons Fdn, Simons Ctr Data Anal, New York, NY USA
关键词
Bacillus subtilis; network inference; sporulation; transcriptional networks; GENOME-WIDE IDENTIFICATION; COMPONENT ANALYSIS; ESCHERICHIA-COLI; GENE-EXPRESSION; BINDING SITES; DATA INTEGRATION; SIGMA-FACTORS; DATA SETS; REVEALS; RECONSTRUCTION;
D O I
10.15252/msb.20156236
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Organisms from all domains of life use gene regulation networks to control cell growth, identity, function, and responses to environmental challenges. Although accurate global regulatory models would provide critical evolutionary and functional insights, they remain incomplete, even for the best studied organisms. Efforts to build comprehensive networks are confounded by challenges including network scale, degree of connectivity, complexity of organism-environment interactions, and difficulty of estimating the activity of regulatory factors. Taking advantage of the large number of known regulatory interactions in Bacillus subtilis and two transcriptomics datasets (including one with 38 separate experiments collected specifically for this study), we use a new combination of network component analysis and model selection to simultaneously estimate transcription factor activities and learn a substantially expanded transcriptional regulatory network for this bacterium. In total, we predict 2,258 novel regulatory interactions and recall 74% of the previously known interactions. We obtained experimental support for 391 (out of 635 evaluated) novel regulatory edges (62% accuracy), thus significantly increasing our understanding of various cell processes, such as spore formation.
引用
收藏
页数:17
相关论文
共 86 条
[1]   Developmentally-Regulated Excision of the SPb Prophage Reconstitutes a Gene Required for Spore Envelope Maturation in Bacillus subtilis [J].
Abe, Kimihiro ;
Kawano, Yuta ;
Iwamoto, Keito ;
Arai, Kenji ;
Maruyama, Yuki ;
Eichenberger, Patrick ;
Sato, Tsutomu .
PLOS GENETICS, 2014, 10 (10)
[2]   Network motifs: theory and experimental approaches [J].
Alon, Uri .
NATURE REVIEWS GENETICS, 2007, 8 (06) :450-461
[3]   MEME SUITE: tools for motif discovery and searching [J].
Bailey, Timothy L. ;
Boden, Mikael ;
Buske, Fabian A. ;
Frith, Martin ;
Grant, Charles E. ;
Clementi, Luca ;
Ren, Jingyuan ;
Li, Wilfred W. ;
Noble, William S. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :W202-W208
[4]   A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes [J].
Baldi, P ;
Long, AD .
BIOINFORMATICS, 2001, 17 (06) :509-519
[5]   From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later [J].
Barbe, Valerie ;
Cruveiller, Stephane ;
Kunst, Frank ;
Lenoble, Patricia ;
Meurice, Guillaume ;
Sekowska, Agnieszka ;
Vallenet, David ;
Wang, Tingzhang ;
Moszer, Ivan ;
Medigue, Claudine ;
Danchin, Antoine .
MICROBIOLOGY-SGM, 2009, 155 :1758-1775
[6]   Genome-wide identification of Bacillus subtilis CodY-binding sites at single-nucleotide resolution [J].
Belitsky, Boris R. ;
Sonenshein, Abraham L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (17) :7026-7031
[7]   The Inferelator:: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo [J].
Bonneau, Richard ;
Reiss, David J. ;
Shannon, Paul ;
Facciotti, Marc ;
Hood, Leroy ;
Baliga, Nitin S. ;
Thorsson, Vesteinn .
GENOME BIOLOGY, 2006, 7 (05)
[8]   Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach [J].
Boulesteix, Anne-Laure ;
Strimmer, Korbinian .
THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2005, 2
[9]   Hierarchical expression of genes controlled by the Bacillus subtilis global regulatory protein CodY [J].
Brinsmade, Shaun R. ;
Alexander, Elizabeth L. ;
Livny, Jonathan ;
Stettner, Arion I. ;
Segre, Daniel ;
Rhee, Kyu Y. ;
Sonenshein, Abraham L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (22) :8227-8232
[10]   A system-level model for the microbial regulatory genome [J].
Brooks, Aaron N. ;
Reiss, David J. ;
Allard, Antoine ;
Wu, Wei-Ju ;
Salvanha, Diego M. ;
Plaisier, Christopher L. ;
Chandrasekaran, Sriram ;
Pan, Min ;
Kaur, Amardeep ;
Baliga, Nitin S. .
MOLECULAR SYSTEMS BIOLOGY, 2014, 10 (07)