CLN3 expression is sufficient to restore G1-to-S-phase progression in Saccharomyces cerevisiae mutants defective in translation initiation factor eIF4E

被引:45
作者
Danaie, P
Altmann, M
Hall, MN
Trachsel, H
Helliwell, SB
机构
[1] Univ Bern, Inst Biochem & Mol Biol, CH-3012 Bern, Switzerland
[2] Univ Basel, Biozentrum, Dept Biochem, CH-4056 Basel, Switzerland
关键词
cdc mutant; cell cycle; cyclin; yeast;
D O I
10.1042/0264-6021:3400135
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The essential cap-binding protein (eIF4E) of Saccharomyces cerevisiae is encoded by the CDC33 (wild-type) gene, originally isolated as a mutant, cdc33-1, which arrests growth in the G(1)-phase of the cell cycle at 37 degrees C. We show that other cdc33 mutants also arrest in G(1). One of the first events required for G(1)-to-S-phase progression is the increased expression of cyclin 3. Constructs carrying the 5'-untranslated region of CLN3 fused to lacZ exhibit weak reporter activity, which is significantly decreased in a cdc33-1 mutant, implying that CLN3 mRNA is an inefficiently translated mRNA that is sensitive to perturbations in the translation machinery. A cdc33-1 strain expressing either stable Cln3p (Cln3-1p) or a hybrid UBI4 5'-CLN3 mRNA, whose translation displays decreased dependence on eIF4E, arrested randomly in the cell cycle. In these cells CLN2 mRNA levels remained high, indicating that Cln3p activity is maintained. Induction of a hybrid UBI4 5'-CLN3 message in a cdc33-1 mutant previously arrested in G(1) also caused entry into a new cell cycle. We conclude that eIF4E activity in the G(1)-phase is critical in allowing sufficient Cln3p activity to enable yeast cells to enter a new cell cycle.
引用
收藏
页码:135 / 141
页数:7
相关论文
共 41 条
[1]   ALTERED MESSENGER-RNA CAP RECOGNITION ACTIVITY OF INITIATION FACTOR-4E IN THE YEAST-CELL CYCLE DIVISION MUTANT CDC33 [J].
ALTMANN, M ;
TRACHSEL, H .
NUCLEIC ACIDS RESEARCH, 1989, 17 (15) :5923-5931
[2]   TRANSLATION IN SACCHAROMYCES-CEREVISIAE - INITIATION-FACTOR 4E-DEPENDENT CELL-FREE SYSTEM [J].
ALTMANN, M ;
SONENBERG, N ;
TRACHSEL, H .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (10) :4467-4472
[3]   MESSENGER-RNA CAP-BINDING PROTEIN - CLONING OF THE GENE ENCODING PROTEIN-SYNTHESIS INITIATION FACTOR-EIF-4E FROM SACCHAROMYCES-CEREVISIAE [J].
ALTMANN, M ;
HANDSCHIN, C ;
TRACHSEL, H .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (03) :998-1003
[4]   TOR controls translation initiation and early G1 progression in yeast [J].
Barbet, NC ;
Schneider, U ;
Helliwell, SB ;
Stansfield, I ;
Tuite, MF ;
Hall, MN .
MOLECULAR BIOLOGY OF THE CELL, 1996, 7 (01) :25-42
[5]   REPRESSION OF GROWTH-REGULATED G1 CYCLIN EXPRESSION BY CYCLIC-AMP IN BUDDING YEAST [J].
BARONI, MD ;
MONTI, P ;
ALBERGHINA, L .
NATURE, 1994, 371 (6495) :339-342
[6]   Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation [J].
Beretta, L ;
Gingras, AC ;
Svitkin, YV ;
Hall, MN ;
Sonenberg, N .
EMBO JOURNAL, 1996, 15 (03) :658-664
[7]   CDC33 ENCODES MESSENGER-RNA CAP-BINDING PROTEIN EIF-4E OF SACCHAROMYCES-CEREVISIAE [J].
BRENNER, C ;
NAKAYAMA, N ;
GOEBL, M ;
TANAKA, K ;
TOHE, A ;
MATSUMOTO, K .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (08) :3556-3559
[8]   A signaling pathway to translational control [J].
Brown, EJ ;
Schreiber, SL .
CELL, 1996, 86 (04) :517-520
[9]   PROTEIN-SYNTHESIS REQUIREMENTS FOR NUCLEAR DIVISION, CYTOKINESIS, AND CELL-SEPARATION IN SACCHAROMYCES-CEREVISIAE [J].
BURKE, DJ ;
CHURCH, D .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (07) :3691-3698
[10]   RAPT1, A MAMMALIAN HOMOLOG OF YEAST TOR, INTERACTS WITH THE FKBP12 RAPAMYCIN COMPLEX [J].
CHIU, MI ;
KATZ, H ;
BERLIN, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (26) :12574-12578