Micromagnetic simulation of magnetization reversal in rotational magnetic fields

被引:4
作者
Fidler, J [1 ]
Schrefl, T [1 ]
Scholz, W [1 ]
Suess, D [1 ]
Tsiantos, VD [1 ]
机构
[1] Vienna Univ Technol, Inst Appl & Tech Phys, A-1040 Vienna, Austria
来源
PHYSICA B | 2001年 / 306卷 / 1-4期
关键词
numerical micromagnetics; precessional switching; rotational fields; Co nano-elements;
D O I
10.1016/S0921-4526(01)00988-7
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Transient magnetization states during switching are investigated numerically in thin Co nano-elements of square (100 X 100nm(2)), rectangular (100 x 300nm(2)) and circular (100nm diameter) shapes with a thickness of 20nm. Switching dynamics are calculated for external fields applied instantaneously and for rotational fields with field strengths in the order of the static critical field (H = 0.20-0.32J(s)/mu (0)). Reversal in the unidirectional field proceeds by the nucleation and propagation of end domains toward the center of the particle. It is found that the switching time strongly depends on the Gilbert damping parameter alpha. Small values of alpha ( less than or equal to0.1) lead to shorter switching times of 0.1-0.3 ns. Reversal in rotational fields involves inhomogeneous rotation of the end domains toward the rotational field direction. Depending on the damping parameter, fast switching times ( less than or equal to0.1 ns) are obtained by increasing the field strength to H = 0.5J(s)/mu (0). (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:112 / 116
页数:5
相关论文
共 7 条
[1]   Micromagnetic modelling - the current state of the art [J].
Fidler, J ;
Schrefl, T .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2000, 33 (15) :R135-R156
[2]   HYBRID METHOD FOR COMPUTING DEMAGNETIZING FIELDS [J].
FREDKIN, DR ;
KOEHLER, TR .
IEEE TRANSACTIONS ON MAGNETICS, 1990, 26 (02) :415-417
[3]  
Gardiner C. W., 1985, HDB STOCHASTIC METHO, V3
[4]   Algorithms and software for ordinary differential equations and differential-algebraic equations, part II: higher-order methods and software packages [J].
Hindmarsh, Alan C. ;
Petzold, Linda R. .
Computers in Physics, 1995, 9 (02)
[5]   ON THE MINIMUM OF MAGNETIZATION REVERSAL TIME [J].
KIKUCHI, R .
JOURNAL OF APPLIED PHYSICS, 1956, 27 (11) :1352-1357
[6]   Stiffness analysis for the micromagnetic standard problem No. 4 [J].
Tsiantos, VD ;
Suess, D ;
Schrefl, T ;
Fidler, J .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (11) :7600-7602
[7]   Magnetic excitations in a weak-stripe-domain structure: A 2D dynamic micromagnetic approach [J].
Vukadinovic, N ;
Vacus, O ;
Labrune, M ;
Acher, O ;
Pain, D .
PHYSICAL REVIEW LETTERS, 2000, 85 (13) :2817-2820