A test sensitive to extreme hidden periodicities

被引:3
作者
Arsham, H
机构
[1] Information Systems Research Center, Merrick School of Business, University of Baltimore, Baltimore
来源
STOCHASTIC HYDROLOGY AND HYDRAULICS | 1997年 / 11卷 / 04期
关键词
Kolmogorov-Smirnov test; identification of periodic component; goodness-of-fit test for white noise; periodogram; residuals;
D O I
10.1007/BF02427922
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A modified version of the widely used Kolmogorov-Smirnov (K-S) test of null hypothesis is constructed, that a given time series is Gaussian white noise, against the alternative hypothesis that the time series contains an added or multiplicative deterministic-periodic component of unspecified frequency. The usual KS test is treated as a special case. The proposed test is more powerful than the ordinary K-S test in detecting extreme (low or high) hidden periodicities. Computational procedure necessary for implementation are also given.
引用
收藏
页码:323 / 330
页数:8
相关论文
共 10 条
[1]  
ANDERSON OD, 1976, TIME SERIES ANAL FOR
[2]  
Arsham H., 1986, J STAT COMPUTATIONAL, V25, P9
[3]  
Brockwell PJ., 1991, Time Series: Theory and Methods
[4]  
DURBIN J, 1969, BIOMETRIKA, V56, P1
[5]  
FULLER WA, 1996, INTRO STATISTICAL TI
[6]  
PERCIVAL DB, 1993, SPECTRAL ANAL PHYSIC
[7]   BEST INVARIANT CONFIDENCE BANDS FOR A CONTINUOUS CUMULATIVE DISTRIBUTION FUNCTION [J].
PHADIA, EG .
AUSTRALIAN JOURNAL OF STATISTICS, 1974, 16 (03) :148-152
[8]  
POWELL MJD, 1983, MATH PROGRAMMING STA
[9]  
Shorach G. R., 1986, EMPIRICAL PROCESSES
[10]  
WILKS D, 1995, STAT METHODS IS ATMO