HSF and Msn2/4p can exclusively or cooperatively activate the yeast HSP104 gene

被引:52
作者
Grably, MR [1 ]
Stanhill, A [1 ]
Tell, O [1 ]
Engelberg, D [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Life Sci, Dept Biol Chem, IL-91904 Jerusalem, Israel
关键词
D O I
10.1046/j.1365-2958.2002.02860.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In an effort to understand how an accurate level of stress-specific expression is obtained, we studied the promoter of the yeast HSP104 gene. Through 5' deletions, we defined a 334 bp fragment upstream of the first coding AUG as sufficient and essential for maximal basal activity and a 260 bp fragment as sufficient and essential for heat shock responsiveness. These sequences contain heat shock elements (HSEs) and stress response elements (STREs) that cooperate to achieve maximal inducible expression. However, in the absence of one set of factors (e.g. in msn2 Delta msn4 Delta cells) proper induction is obtained exclusively through HSEs. We also show that HSP104 is constitutively derepressed in ras2 Delta cells. This derepression is achieved exclusively through activation of STREs, with no role for HSEs. Strikingly, in ras2 Delta msn2 Delta msn4 Delta cells the HSP104 promoter is also derepressed, but in this strain derepression is mediated through HSEs, showing the flexibility and adaptation of the promoter. Thus, appropriate transcription of HSP104 is usually obtained through cooperation between the Msn2/4/STRE and the HSF/ HSE systems, but each factor could activate the promoter alone, backing up the other. Transcription control of HSP104 is adaptive and robust, ensuring proper expression under extreme conditions and in various mutants.
引用
收藏
页码:21 / 35
页数:15
相关论文
共 64 条
[1]   Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner [J].
Amorós, M ;
Estruch, F .
MOLECULAR MICROBIOLOGY, 2001, 39 (06) :1523-1532
[2]  
Ausubel F.M., 1991, CURRENT PROTOCOLS MO
[3]   CONTROL OF SACCHAROMYCES-CEREVISIAE CATALASE T-GENE (CTT1) EXPRESSION BY NUTRIENT SUPPLY VIA THE RAS-CYCLIC AMP PATHWAY [J].
BISSINGER, PH ;
WIESER, R ;
HAMILTON, B ;
RUIS, H .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (03) :1309-1315
[4]   Complex regulation of the yeast heat shock transcription factor [J].
Bonner, JJ ;
Carlson, T ;
Fackenthal, DL ;
Paddock, D ;
Storey, K ;
Lea, K .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (05) :1739-1751
[5]   REGULATION OF A YEAST HSP70 GENE BY A CAMP RESPONSIVE TRANSCRIPTIONAL CONTROL ELEMENT [J].
BOORSTEIN, WR ;
CRAIG, EA .
EMBO JOURNAL, 1990, 9 (08) :2543-2553
[6]   TRANSCRIPTIONAL REGULATION OF SSA3, AN HSP70 GENE FROM SACCHAROMYCES-CEREVISIAE [J].
BOORSTEIN, WR ;
CRAIG, EA .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (06) :3262-3267
[7]   The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons [J].
Boy-Marcotte, E ;
Lagniel, G ;
Perrot, M ;
Bussereau, F ;
Boudsocq, A ;
Jacquet, M ;
Labarre, J .
MOLECULAR MICROBIOLOGY, 1999, 33 (02) :274-283
[8]   Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae [J].
Boy-Marcotte, E ;
Perrot, M ;
Bussereau, F ;
Boucherie, H ;
Jacquet, M .
JOURNAL OF BACTERIOLOGY, 1998, 180 (05) :1044-1052
[9]   High cAMP levels antagonize the reprogramming of gene expression that occurs at the diauxic shift in Saccharomyces cerevisiae [J].
BoyMarcotte, E ;
Tadi, D ;
Perrot, M ;
Boucherie, H ;
Jacquet, M .
MICROBIOLOGY-UK, 1996, 142 :459-467
[10]   The heat-shock transcription factor HSF1 is rapidly activated by either hyper- or hypo-osmotic stress in mammalian cells [J].
Caruccio, L ;
Bae, SW ;
Liu, AYC ;
Chen, KY .
BIOCHEMICAL JOURNAL, 1997, 327 :341-347