Density correlations in the half-filled Hubbard model

被引:14
作者
Essler, FHL
Frahm, H
机构
[1] Univ Oxford, Dept Phys Theoret Phys, Oxford OX1 3NP, England
[2] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
来源
PHYSICAL REVIEW B | 1999年 / 60卷 / 12期
关键词
D O I
10.1103/PhysRevB.60.8540
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider density-density correlations in the one-dimensional Hubbard model at half filling. On intuitive grounds one might expect them to exhibit an exponential decay. However, as has been noted recently, this is not obvious from the Bethe Ansatz/conformal field theory (BA/CFT) approach, We show that by supplementing the BA/CFT analysis with simple symmetry arguments one can easily prove that correlations of the lattice density operators decay exponentially. [S0163-1829(99)12135-0].
引用
收藏
页码:8540 / 8542
页数:3
相关论文
共 15 条
[1]   Metal-insulator transition in the one-dimensional SU(N) Hubbard model [J].
Assaraf, R ;
Azaria, P ;
Caffarel, M ;
Lecheminant, P .
PHYSICAL REVIEW B, 1999, 60 (04) :2299-2318
[2]   One-dimensional SU(4) spin-orbital model: A low-energy effective theory [J].
Azaria, P ;
Gogolin, AO ;
Lecheminant, P ;
Nersesyan, AA .
PHYSICAL REVIEW LETTERS, 1999, 83 (03) :624-627
[3]   Classification and stability of phases of the multicomponent one-dimensional electron gas [J].
Emery, VJ ;
Kivelson, SA ;
Zachar, O .
PHYSICAL REVIEW B, 1999, 59 (24) :15641-15653
[4]  
Emery VJ, 1979, Highly conducting one-dimensional solids
[5]  
ESSLER FHL, 1994, PHYS REV LETT, V72, P908, DOI 10.1103/PhysRevLett.72.908
[6]   SU(2)XSU(2)-INVARIANT SCATTERING MATRIX OF THE HUBBARD-MODEL [J].
ESSLER, FHL ;
KOREPIN, VE .
NUCLEAR PHYSICS B, 1994, 426 (03) :505-533
[7]   CRITICAL EXPONENTS FOR THE ONE-DIMENSIONAL HUBBARD-MODEL [J].
FRAHM, H ;
KOREPIN, VE .
PHYSICAL REVIEW B, 1990, 42 (16) :10553-10565
[8]  
Heilmann O. J., 1971, ANN NY ACAD SCI, V172, P583
[9]   ABSENCE OF MOTT TRANSITION IN AN EXACT SOLUTION OF SHORT-RANGE 1-BAND MODEL IN 1 DIMENSION [J].
LIEB, EH ;
WU, FY .
PHYSICAL REVIEW LETTERS, 1968, 20 (25) :1445-+
[10]   2 THEOREMS ON THE HUBBARD-MODEL [J].
LIEB, EH .
PHYSICAL REVIEW LETTERS, 1989, 62 (10) :1201-1204