How Light-Harvesting Semiconductors Can Alter the Bias of Reversible Electrocatalysts in Favor of H2 Production and CO2 Reduction

被引:61
作者
Bachmeier, Andreas [1 ]
Wang, Vincent C. C. [1 ]
Woolerton, Thomas W. [1 ]
Bell, Sophie [1 ]
Fontecilla-Camps, Juan C. [2 ]
Can, Mehmet [3 ]
Ragsdale, Stephen W. [3 ]
Chaudhary, Yatendra S. [1 ,4 ]
Armstrong, Fraser A. [1 ]
机构
[1] Univ Oxford, Dept Chem, Inorgan Chem Lab, Oxford OX1 3QR, England
[2] Univ Grenoble 1, Lab Cristallog & Cristallogenese Prot, Inst Biol Struct Jean Pierre Ebel CEA CNRS, F-38041 Grenoble 9, Rhone Alpes, France
[3] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
[4] CSIR, Inst Minerals & Mat Technol, Colloids & Mat Chem Dept, Bhubaneswar 751013, Orissa, India
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
CRYSTAL-STRUCTURE; HYDROGEN; ENZYME; ADSORPTION; ELECTRODES; CONVERSION; EFFICIENT; SURFACE; CDS;
D O I
10.1021/ja4042675
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The most efficient catalysts for solar fuel production should operate close to reversible potentials, yet possess a bias for the fuel-forming direction. Protein film electrochemical studies of Ni-containing carbon monoxide dehydrogenase and [NiFeSe]-hydrogenase, each a reversible electrocatalyst, show that the electronic state of the electrode strongly biases the direction of electrocatalysis of CO2/CO and H+/H-2 interconversions. Attached to graphite electrodes, these enzymes show high activities for both oxidation and reduction, but there is a marked shift in bias, in favor of CO2 or H+ reduction, when the respective enzymes are attached instead to n-type semiconductor electrodes constructed from CdS and TiO2 nanoparticles. This catalytic rectification effect can arise for a reversible electrocatalyst attached to a semiconductor electrode if the electrode transforms between semiconductor- and metallic-like behavior across the same narrow potential range (<0.25 V) that the electrocatalytic current switches between oxidation and reduction.
引用
收藏
页码:15026 / 15032
页数:7
相关论文
共 36 条
[1]   Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes [J].
Armstrong, Fraser A. ;
Hirst, Judy .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (34) :14049-14054
[2]  
Bard A. J., 2001, ELECTROCHEMICAL METH, V7
[3]   Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell [J].
Barton, Emily E. ;
Rampulla, David M. ;
Bocarsly, Andrew B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (20) :6342-+
[4]   Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels [J].
Benson, Eric E. ;
Kubiak, Clifford P. ;
Sathrum, Aaron J. ;
Smieja, Jonathan M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :89-99
[5]   (Photo) electrochemical Methods for the Determination of the Band Edge Positions of TiO2-Based Nanomaterials [J].
Beranek, Radim .
ADVANCES IN PHYSICAL CHEMISTRY, 2011,
[6]   Electron accumulation in nanostructured TiO2 (anatase) electrodes [J].
Boschloo, G ;
Fitzmaurice, D .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (03) :1117-1123
[7]  
Bott A.W., 1998, Current Separations, V17, P87, DOI DOI 10.1016/0038-092X(64)90079-9
[8]   Characterization of Photochemical Processes for H2 Production by CdS Nanorod-[FeFe] Hydrogenase Complexes [J].
Brown, Katherine A. ;
Wilker, Molly B. ;
Boehm, Marko ;
Dukovic, Gordana ;
King, Paul W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (12) :5627-5636
[9]   Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals [J].
Chaudhary, Yatendra S. ;
Woolerton, Thomas W. ;
Allen, Christopher S. ;
Warner, Jamie H. ;
Pierce, Elizabeth ;
Ragsdale, Stephen W. ;
Armstrong, Fraser A. .
CHEMICAL COMMUNICATIONS, 2012, 48 (01) :58-60
[10]   Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster [J].
Dobbek, H ;
Svetlitchnyi, V ;
Gremer, L ;
Huber, R ;
Meyer, O .
SCIENCE, 2001, 293 (5533) :1281-1285