Biodegradable poly (ethylenimine) for plasmid DNA delivery

被引:267
作者
Ahn, CH [1 ]
Chae, SY [1 ]
Bae, YH [1 ]
Kim, SW [1 ]
机构
[1] Univ Utah, Dept Pharmaceut & Pharmaceut Chem, Ctr Controlled Chem Delivery, Salt Lake City, UT 84112 USA
关键词
poly(ethylenimine); poly(ethylene glycol); biodegradable; gene delivery; plasmid DNA;
D O I
10.1016/S0168-3659(01)00547-8
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Poly(ethylenimine) (PEI) has been known as an efficient gene carrier with the highest cationic charge potential. High transfection efficiency of PEI, along with its cytotoxicity, strongly depends on the molecular weight. Synthesis of cationic copolymers derived from the low molecular weight of PEI and hydrophilic poly(ethylene glycol) (PEG), which are water soluble and degradable under physiological conditions, was investigated for plasmid delivery. Hydrophilic PEG is expected to reduce the toxicity of the copolymer, improve the poor solubility of the PEI and DNA complexes, and help to introduce degradable bonds by reaction with the primary amines in the PEI. Considering the dependence of transfection efficiency and cytotoxicity on the molecular weight of the PEI, high transfection efficiency is expected from an increased molecular weight of the copolymer and low cytotoxicity from the introduction of PEG and the degradation of the copolymer into low molecular weight PEIs. Reaction conditions were carefully controlled to produce water soluble copolymers. Results from a gel retardation assay and zetapotentiometer indicated that complete neutralization of the complexes was achieved at the charge ratios of copolymer/pSV-beta-gal plasmid from 0.8 to 1.0 with the mean particle size of the polyplexes ranging from 129.8+/-0.9 to 151.8+/-3.4 nm. In vitro transfection efficiency of the synthesized copolymer increased up to three times higher than that of starting low molecular weight PEI, while the cell viability was maintained over 80%. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:273 / 282
页数:10
相关论文
共 36 条
[1]   Synthesis of poly(ethylene glycol)-block-poly(ethylenimine) possessing an acetal group at the PEG end [J].
Akiyama, Y ;
Harada, A ;
Nagasaki, Y ;
Kataoka, K .
MACROMOLECULES, 2000, 33 (16) :5841-5845
[2]  
Behr JP, 1997, CHIMIA, V51, P34
[3]   A VERSATILE VECTOR FOR GENE AND OLIGONUCLEOTIDE TRANSFER INTO CELLS IN CULTURE AND IN-VIVO - POLYETHYLENIMINE [J].
BOUSSIF, O ;
LEZOUALCH, F ;
ZANTA, MA ;
MERGNY, MD ;
SCHERMAN, D ;
DEMENEIX, B ;
BEHR, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7297-7301
[4]  
Boussif O, 1996, GENE THER, V3, P1074
[5]   Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier [J].
Choi, YH ;
Liu, F ;
Kim, JS ;
Choi, YK ;
Park, JS ;
Kim, SW .
JOURNAL OF CONTROLLED RELEASE, 1998, 54 (01) :39-48
[6]   Nanoscopic structure of DNA condensed for gene delivery [J].
Dunlap, DD ;
Maggi, A ;
Soria, MR ;
Monaco, L .
NUCLEIC ACIDS RESEARCH, 1997, 25 (15) :3095-3101
[7]   Major limitations in the use of cationic liposomes for DNA delivery [J].
Filion, MC ;
Phillips, NC .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 1998, 162 (1-2) :159-170
[8]   A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine:: Effect of molecular weight on transfection efficiency and cytotoxicity [J].
Fischer, D ;
Bieber, T ;
Li, YX ;
Elsässer, HP ;
Kissel, T .
PHARMACEUTICAL RESEARCH, 1999, 16 (08) :1273-1279
[9]  
Godbey WT, 2000, J BIOMED MATER RES, V51, P321, DOI 10.1002/1097-4636(20000905)51:3<321::AID-JBM5>3.0.CO
[10]  
2-R