Two-Photon Imaging during Prolonged Middle Cerebral Artery Occlusion in Mice Reveals Recovery of Dendritic Structure after Reperfusion

被引:97
作者
Li, Ping [1 ]
Murphy, Timothy H. [1 ,2 ,3 ]
机构
[1] Univ British Columbia, Dept Psychiat, Kinsmen Lab, Vancouver, BC V6T 1Z3, Canada
[2] Univ British Columbia, Brain Res Ctr, Vancouver, BC V6T 1Z3, Canada
[3] Univ British Columbia, Dept Cellular & Physiol Sci, Vancouver, BC V6T 1Z3, Canada
基金
加拿大健康研究院;
关键词
stroke; imaging; dendritic spine; blood flow; ischemia; dendrite;
D O I
10.1523/JNEUROSCI.3724-08.2008
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Filament occlusion of the middle cerebral artery (MCA) is a well accepted animal model of focal ischemia. Advantages of the model are relatively long occlusion times and a large penumbra region that simulates aspects of human stroke. Here, we use two-photon and confocal microscopy in combination with regional measurement of blood flow using laser speckle to assess the spatial relationship between the borders of the MCA ischemic territory and loss of dendrite structure, as well as the effect of reperfusion on dendritic damage in adult YFP (yellow fluorescent protein) and GFP (green fluorescent protein) C57BL/6 transgenic mice with fluorescent (predominantly layer 5) neurons. By examining the spatial extent of dendritic damage, we determined that 60 min of MCA occlusion produced a core with severe structural damage that did not recover after reperfusion (begins similar to 3.8 mm lateral to midline), a reversibly damaged area up to 0.6 mm medial to the core that recovered after reperfusion (penumbra), and a relatively structurally intact area (similar to 1 mm wide; medial penumbra) with hypoperfusion. Loss of structure was preceded by a single ischemic depolarization 122.1 +/- 10.2 s after occlusion onset. Reperfusion of animals after 60 min of ischemia was not associated with exacerbation of damage (reperfusion injury) and resulted in a significant restoration of blebbed dendritic structure, but only within similar to 0.6 mm lateral of the dendritic damage structural border. In summary, we find that recovery of dendritic structure can occur after reperfusion after even 60 min of ischemia, but is likely restricted to a relatively small penumbra region with partial blood flow or oxygenation.
引用
收藏
页码:11970 / 11979
页数:10
相关论文
共 45 条
[1]   Physiological evidence that pyramidal neurons lack functional water channels [J].
Andrew, R. David ;
Labron, Mark W. ;
Boehnke, Susan E. ;
Carnduff, Lisa ;
Kirov, Sergei A. .
CEREBRAL CORTEX, 2007, 17 (04) :787-802
[2]   Reperfusion injury: Demonstration of brain damage produced by reperfusion after transient focal ischemia in rats [J].
Aronowski, J ;
Strong, R ;
Grotta, JC .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1997, 17 (10) :1048-1056
[3]   Intravenous basic fibroblast growth factor decreases brain injury resulting from focal ischemia in cats [J].
Bethel, A ;
Kirsch, JR ;
Koehler, RC ;
Finklestein, SP ;
Traystman, RJ .
STROKE, 1997, 28 (03) :609-615
[4]  
BETHEL A, 1997, STROKE, V28, P615
[5]  
BRIERS JD, 1982, INVEST OPHTH VIS SCI, V22, P255
[6]   THE EFFECT OF HYPOTHERMIA ON TRANSIENT MIDDLE CEREBRAL-ARTERY OCCLUSION IN THE RAT [J].
CHEN, H ;
CHOPP, M ;
ZHANG, ZG ;
GARCIA, JH .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1992, 12 (04) :621-628
[7]   A2A adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice [J].
Chen, JF ;
Huang, ZH ;
Ma, JY ;
Zhu, JM ;
Moratalla, R ;
Standaert, D ;
Moskowitz, MA ;
Fink, JS ;
Schwarzschild, MA .
JOURNAL OF NEUROSCIENCE, 1999, 19 (21) :9192-9200
[8]  
del Zoppo G, 2000, BRAIN PATHOL, V10, P95
[9]   Dynamic imaging of cerebral blood flow using laser speckle [J].
Dunn, AK ;
Bolay, T ;
Moskowitz, MA ;
Boas, DA .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2001, 21 (03) :195-201
[10]   Acute ischemic stroke: Overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia [J].
Durukan, Aysan ;
Tatlisumak, Turgut .
PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR, 2007, 87 (01) :179-197