Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials

被引:118
作者
Babicheva, Viktoriia E. [1 ,2 ,3 ]
Kinsey, Nathaniel [2 ,3 ]
Naik, Gururaj V. [2 ,3 ]
Ferrera, Marcello [2 ,3 ,4 ]
Lavrinenko, Andrei V. [1 ]
Shalaev, Vladimir M. [2 ,3 ,5 ]
Boltasseva, Alexandra [1 ,2 ,3 ]
机构
[1] Tech Univ Denmark, DTU Fotonik Dept Photon Engn, DK-2800 Lyngby, Denmark
[2] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[3] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[4] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[5] BC URAL, Russian Quantum Ctr, Skolkovo 143025, Moscow Region, Russia
来源
OPTICS EXPRESS | 2013年 / 21卷 / 22期
关键词
WAVE-GUIDES; OPTICS; NITRIDE;
D O I
10.1364/OE.21.027326
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose several planar layouts of ultra-compact plasmonic modulators that utilize alternative plasmonic materials such as transparent conducting oxides and titanium nitride. The modulation is achieved by tuning the carrier concentration in a transparent conducting oxide layer into and out of the plasmon resonance with an applied electric field. The resonance significantly increases the absorption coefficient of the modulator, which enables larger modulation depth. We show that an extinction ratio of 46 dB/mu m can be achieved, allowing for a 3-dB modulation depth in much less than one micron at the telecommunication wavelength. Our multilayer structures can be integrated with existing plasmonic and photonic waveguides as well as novel semiconductor-based hybrid photonic/electronic circuits. (C) 2013 Optical Society of America
引用
收藏
页码:27326 / 27337
页数:12
相关论文
共 58 条
[1]   Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide [J].
Babicheva, Viktoriia E. ;
Kulkova, Irina V. ;
Malureanu, Radu ;
Yvind, Kresten ;
Lavrinenko, Andrei V. .
PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2012, 10 (04) :389-399
[2]   Plasmonic modulator optimized by patterning of active layer and tuning permittivity [J].
Babicheva, Viktoriia E. ;
Lavrinenko, Andrei V. .
OPTICS COMMUNICATIONS, 2012, 285 (24) :5500-5507
[3]  
Bass M., 1994, Devices, Measurements, and Properties, V2
[4]   Long-range surface plasmon polaritons [J].
Berini, Pierre .
ADVANCES IN OPTICS AND PHOTONICS, 2009, 1 (03) :484-588
[5]   Integrated optical components utilizing long-range surface plasmon polaritons [J].
Boltasseva, A ;
Nikolajsen, T ;
Leosson, K ;
Kjaer, K ;
Larsen, MS ;
Bozhevolnyi, SI .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (01) :413-422
[6]   Low-Loss Plasmonic Metamaterials [J].
Boltasseva, Alexandra ;
Atwater, Harry A. .
SCIENCE, 2011, 331 (6015) :290-291
[7]  
Bozhevolnyi SI, 2009, PLASMONIC NANOGUIDES AND CIRCUITS, P1
[8]  
Brask J. K., 2004, US Patent, Patent No. [6 716 707, 6716707]
[9]   APPLIED PHYSICS The Case for Plasmonics [J].
Brongersma, Mark L. ;
Shalaev, Vladimir M. .
SCIENCE, 2010, 328 (5977) :440-441
[10]  
Brongersma ML, 2007, SPRINGER SER OPT SCI, V131, P1, DOI 10.1007/978-1-4020-4333-8