Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia

被引:298
作者
Argyle, MD
Chen, KD
Bell, AT [1 ]
Iglesia, E
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat & Chem Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
关键词
D O I
10.1006/jcat.2002.3570
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The catalytic properties of Al2O3-supported vanadia with a wide range of VOx surface density (1.4-34.2 V/nm(2)) and structure were examined for the oxidative dehydrogenation of ethane and propane. UV-visible and Raman spectra showed that vanadia is dispersed predominately as isolated monovanadate species below similar to2.3 V/nm(2). As surface densities increase, two-dimensional poly-vanadates appear (2.3-7.0 V/nm(2)), along with increasing amounts of V2O5 crystallites at surface densities above 7.0 V/nm(2). The rate constant for oxidative dehydrogenation (k(1)) and its ratio with alkane and alkene combustion (k(2)/k(1) and k(3)/k(1), respectively) were compared for both alkane reactants as a function of vanadia surface density. Propene formation rates (per V atom) are approximately eight times higher than ethene formation rates at a given reaction temperature, but the apparent ODH activation energies (El) are similar for the two reactants and relatively insensitive to vanadia surface density. Ethene and propene formation rates (per V atom) are strongly influenced by vanadia surface density and reach a maximum value at intermediate surface densities (similar to8 V/nm(2)). The ratio of k(2)/k(1) depends weakly on reaction temperature, indicating that activation energies for alkane combustion and ODH reactions are similar. The ratio of k(2)/k(1) is independent of surface density for ethane but increases slightly with vanadia surface density for propane, suggesting that isolated structures prevalent at low surface densities are slightly more selective for alkane dehydrogenation reactions. The ratio of k(3)/k(1) decreases markedly with increasing reaction temperature for both ethane and propane ODH. Thus, the apparent activation energy for alkene combustion (E-3) is much lower than that for alkane dehydrogenation (E-1) and the difference between these two activation energies decreases with increasing surface density. The lower alkene selectivities observed at high vanadia surface densities are attributed to an increase in alkene adsorption enthalpies with increasing vanadia surface density. The highest yield of alkene is obtained for catalysts containing predominantly isolated monovanadate species and operated at high temperatures that avoid homogeneous reactions (< similar to800 K). (C) 2002 Elsevier science (USA).
引用
收藏
页码:139 / 149
页数:11
相关论文
共 32 条
[1]   Key aspects of catalyst design for the selective oxidation of paraffins [J].
Albonetti, S ;
Cavani, F ;
Trifiro, F .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1996, 38 (04) :413-438
[2]   How oxide carriers affect the reactivity of V2O5 catalysts in the oxidative dehydrogenation of propane [J].
Arena, F ;
Frusteri, F ;
Parmaliana, A .
CATALYSIS LETTERS, 1999, 60 (1-2) :59-63
[3]  
ARGYLE MD, IN PRESS J PHYS CH B
[4]   Supported metal oxide and other catalysts for ethane conversion:: a review [J].
Bañares, MA .
CATALYSIS TODAY, 1999, 51 (02) :319-348
[5]  
Banares MA, 1997, STUD SURF SCI CATAL, V110, P295
[6]   Structure and electronic properties of solid acids based on tungsten oxide nanostructures [J].
Barton, DG ;
Shtein, M ;
Wilson, RD ;
Soled, SL ;
Iglesia, E .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (04) :630-640
[7]   The role of reactant and product bond energies in determining limitations to selective catalytic oxidations [J].
Batiot, C ;
Hodnett, BK .
APPLIED CATALYSIS A-GENERAL, 1996, 137 (01) :179-191
[8]   Oxidative dehydrogenation of ethane and n-butane on VOx/Al2O3 catalysts [J].
Blasco, T ;
Galli, A ;
Nieto, JML ;
Trifiro, F .
JOURNAL OF CATALYSIS, 1997, 169 (01) :203-211
[9]   Oxidative dehydrogenation of short chain alkanes on supported vanadium oxide catalysts [J].
Blasco, T ;
Nieto, JML .
APPLIED CATALYSIS A-GENERAL, 1997, 157 (1-2) :117-142
[10]  
Cassidy F. E., 1998, CATTECH, V2, P173