Use of glycoside hydrolase family 8 xylanases in baking

被引:70
作者
Collins, T [1 ]
Hoyoux, A
Dutron, A
Georis, J
Genot, B
Dauvrin, T
Arnaut, F
Gerday, C
Feller, G
机构
[1] Univ Liege, Inst Chem B6, Biochem Lab, B-4000 Liege, Belgium
[2] Beldem Puratos Grp, B-5300 Andenne, Belgium
[3] Puratos Grp, B-1702 Groot Bijgaarden, Belgium
关键词
xylanase; baking; glycoside hydrolase family 8;
D O I
10.1016/j.jcs.2005.08.002
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Xylanases have long been used in the baking industry for improving dough stability and flexibility and for increasing bread volume and crumb structure. Only xylanases from glycoside hydrolase families 10 and I I appear to have been tested in this application and only those from the latter family have as yet found application. Interestingly, enzymes with a putative xylanase activity are also found in glycoside hydrolase families 5, 7, 8 and 43, but apparently these have not, as yet, been tested in baking. Baking trials were used to determine the effectiveness of a psychrophilic and a mesophilic family 8 xylanolytic enzyme as well as a psychrophilic family 10 xylanase and a currently used family 11 commercial mesophilic xylanase. The potential of family 8 xylanases as technological aids in baking was clearly demonstrated as both the psychrophilic enzyme from Pseudoalteromonas haloplanktis TAH3a and the mesophilic enzyme from Bacillus halodurans C-125 had a positive effect on loaf volume. In contrast, the psychrophilic family 10 enzyme from Cryptococcus adeliae TAE85 was found to be ineffective. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:79 / 84
页数:6
相关论文
共 37 条
[1]  
Baillet E., 2003, RECENT ADV ENZYMES G, P255
[2]   Endo-beta-1,4-xylanase families: differences in catalytic properties [J].
Biely, P ;
Vrsanska, M ;
Tenkanen, M ;
Kluepfel, D .
JOURNAL OF BIOTECHNOLOGY, 1997, 57 (1-3) :151-166
[3]   MODE OF ACTION OF 3 ENDO-BETA-1,4-XYLANASES OF STREPTOMYCES-LIVIDANS [J].
BIELY, P ;
KLUEPFEL, D ;
MOROSOLI, R ;
SHARECK, F .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1162 (03) :246-254
[4]   Unusual microbial xylanases from insect guts [J].
Brennan, Y ;
Callen, WN ;
Christoffersen, L ;
Dupree, P ;
Goubet, F ;
Healey, S ;
Hernández, M ;
Keller, M ;
Li, K ;
Palackal, N ;
Sittenfeld, A ;
Tamayo, G ;
Wells, S ;
Hazlewood, GP ;
Mathur, EJ ;
Short, JM ;
Robertson, DE ;
Steer, BA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (06) :3609-3617
[5]   Xylanases, xylanase families and extremophilic xylanases [J].
Collins, T ;
Gerday, C ;
Feller, G .
FEMS MICROBIOLOGY REVIEWS, 2005, 29 (01) :3-23
[6]   Activity, stability and flexibility in Glycosidases adapted to extreme thermal environments [J].
Collins, T ;
Meuwis, MA ;
Gerday, C ;
Feller, G .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 328 (02) :419-428
[7]   A novel family 8 xylanase, functional and physicochemical characterization [J].
Collins, T ;
Meuwis, MA ;
Stals, I ;
Claeyssens, M ;
Feller, G ;
Gerday, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (38) :35133-35139
[8]  
COLLINS T, 2002, RECENT RES DEV PROTE, V1, P13
[9]   Arabinoxylans and endoxylanases in wheat flour bread-making [J].
Courtin, CM ;
Delcour, JA .
JOURNAL OF CEREAL SCIENCE, 2002, 35 (03) :225-243
[10]   Fractionation-reconstitution experiments provide insight into the role of endoxylanases in bread-making [J].
Courtin, CM ;
Roelants, A ;
Delcour, JA .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 1999, 47 (05) :1870-1877