Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation

被引:382
作者
Chin, Jessie Yao [1 ,2 ]
Steinle, Tobias [1 ,2 ]
Wehlus, Thomas [3 ]
Dregely, Daniel [1 ,2 ]
Weiss, Thomas [1 ,2 ]
Belotelov, Vladimir I. [4 ]
Stritzker, Bernd [3 ]
Giessen, Harald [1 ,2 ]
机构
[1] Univ Stuttgart, Inst Phys 4, D-70550 Stuttgart, Germany
[2] Univ Stuttgart, Res Ctr SCOPE, D-70550 Stuttgart, Germany
[3] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
[4] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
关键词
LIGHT;
D O I
10.1038/ncomms2609
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Light propagation is usually reciprocal. However, a static magnetic field along the propagation direction can break the time-reversal symmetry in the presence of magneto-optical materials. The Faraday effect in magneto-optical materials rotates the polarization plane of light, and when light travels backward the polarization is further rotated. This is applied in optical isolators, which are of crucial importance in optical systems. Faraday isolators are typically bulky due to the weak Faraday effect of available magneto-optical materials. The growing research endeavour in integrated optics demands thin-film Faraday rotators and enhancement of the Faraday effect. Here, we report significant enhancement of Faraday rotation by hybridizing plasmonics with magneto-optics. By fabricating plasmonic nanostructures on laser-deposited magneto-optical thin films, Faraday rotation is enhanced by one order of magnitude in our experiment, while high transparency is maintained. We elucidate the enhanced Faraday effect by the interplay between plasmons and different photonic waveguide modes in our system.
引用
收藏
页数:6
相关论文
共 35 条
[1]   Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems [J].
Belotelov, V. I. ;
Doskolovich, L. L. ;
Zvezdin, A. K. .
PHYSICAL REVIEW LETTERS, 2007, 98 (07)
[2]  
Belotelov VI, 2011, NAT NANOTECHNOL, V6, P370, DOI [10.1038/nnano.2011.54, 10.1038/NNANO.2011.54]
[3]   High Magneto-Optical Activity and Low Optical Losses in Metal-Dielectric Au/Co/Au-SiO2 Magnetoplasmonic Nanodisks [J].
Carlos Banthi, Juan ;
Meneses-Rodriguez, David ;
Garcia, Fernando ;
Ujue Gonzalez, Maria ;
Garcia-Martin, Antonio ;
Cebollada, Alfonso ;
Armelles, Gaspar .
ADVANCED MATERIALS, 2012, 24 (10) :OP36-OP41
[4]   Optical properties of planar metallic photonic crystal structures: Experiment and theory [J].
Christ, A ;
Zentgraf, T ;
Kuhl, J ;
Tikhodeev, SG ;
Gippius, NA ;
Giessen, H .
PHYSICAL REVIEW B, 2004, 70 (12) :125113-1
[5]   Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab [J].
Christ, A ;
Tikhodeev, SG ;
Gippius, NA ;
Kuhl, J ;
Giessen, H .
PHYSICAL REVIEW LETTERS, 2003, 91 (18) :183901-183901
[6]   Optical and Magnetic Properties of Hexagonal Arrays of Subwavelength Holes in Optically Thin Cobalt Films [J].
Ctistis, G. ;
Papaioannou, E. ;
Patoka, P. ;
Gutek, J. ;
Fumagalli, P. ;
Giersig, M. .
NANO LETTERS, 2009, 9 (01) :1-6
[7]  
Davoyan A. R., 2012, PREPRINT
[8]   Optical isolation with epsilon-near-zero metamaterials [J].
Davoyan, Arthur R. ;
Mahmoud, Ahmed M. ;
Engheta, Nader .
OPTICS EXPRESS, 2013, 21 (03) :3279-3286
[9]  
de Lacheisserie E.du Tremolet., 2005, Magnetism: Fundamentals
[10]   ELECTROMAGNETIC-WAVES IN FARADAY CHIRAL MEDIA [J].
ENGHETA, N ;
JAGGARD, DL ;
KOWARZ, MW .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1992, 40 (04) :367-374