A critical role for Pin2/TRF1 in ATM-dependent regulation -: Inhibition of Pin2/TRF1 function complements telomere shortening, radiosensitivity, and the G2/M checkpoint defect of ataxia-telangiectasia cells

被引:58
作者
Kishi, S [1 ]
Lu, KP [1 ]
机构
[1] Harvard Univ, Sch Med, Beth Israel Deaconess Med Ctr, Dept Med,Div Hematol Oncol,Canc Biol Program, Boston, MA 02215 USA
关键词
D O I
10.1074/jbc.M111365200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cells derived from patients with the human genetic disorder ataxia-telangiectasia (A-T) display many abnormalities, including telomere shortening, premature senescence, and defects in the activation of S phase and G(2)/M checkpoints in response to double-strand DNA breaks induced by ionizing radiation. We have previously demonstrated that one of the ATM substrates is Pin2/TRF1, a telomeric protein that binds the potent telomerase inhibitor PinX1, negatively regulates telomere elongation, and specifically affects mitotic progression. Following DNA damage, ATM phosphorylates Pin2/TRF1 and suppresses its ability to induce abortive mitosis and apoptosis (Kishi, S., Zhou, X Z., Nakamura, N., Ziv, Y., Khoo, C., Hill, D. E., Shiloh, Y., and Lu, K. P. (2001) J. Biol. Chem. 276, 29282-29291). However, the functional importance of Pin2/TRF1 in mediating ATM-dependent regulation remains to be established. To address this question, we directly inhibited the function of endogenous Pin2/TRF1 in A-T cells by stable expression of two different dominant-negative Pin2/TRF1 mutants and then examined their effects on telontere length and DNA damage response. Both the Pin2/TRF1 mutants increased telomere length in A-T cells, as shown in other cells. Surprisingly, both the Pin2/TRF1 mutants reduced radiosensitivity and complemented the G2/M checkpoint defect without inhibiting Cdc2 activity in A-T cells. In contrast, neither of the Pin2/TRF1 mutants corrected the S phase checkpoint defect in the same cells. These results indicate that inhibition of Pin2/TRF1 in A-T cells is able to bypass the requirement for ATM in specifically restoring telomere shortening, the G2/M checkpoint defect, and radiosensitivity and demonstrate a critical role for Pin2/TRF1 in the ATM-dependent regulation of telomeres and DNA damage response.
引用
收藏
页码:7420 / 7429
页数:10
相关论文
共 76 条
  • [1] Cell cycle checkpoint signaling through the ATM and ATR kinases
    Abraham, RT
    [J]. GENES & DEVELOPMENT, 2001, 15 (17) : 2177 - 2196
  • [2] Ahmad K, 1999, GENETICS, V151, P1041
  • [3] Enhanced phosphorylation of p53 by ATN in response to DNA damage
    Banin, S
    Moyal, L
    Shieh, SY
    Taya, Y
    Anderson, CW
    Chessa, L
    Smorodinsky, NI
    Prives, C
    Reiss, Y
    Shiloh, Y
    Ziv, Y
    [J]. SCIENCE, 1998, 281 (5383) : 1674 - 1677
  • [4] Atm-deficient mice: A paradigm of ataxia telangiectasia
    Barlow, C
    Hirotsune, S
    Paylor, R
    Liyanage, M
    Eckhaus, M
    Collins, F
    Shiloh, Y
    Crawley, JN
    Ried, T
    Tagle, D
    WynshawBoris, A
    [J]. CELL, 1996, 86 (01) : 159 - 171
  • [5] Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation
    Baskaran, R
    Wood, LD
    Whitaker, LL
    Canman, CE
    Morgan, SE
    Xu, Y
    Barlow, C
    Baltimore, D
    WynshawBoris, A
    Kastan, MB
    Wang, JYJ
    [J]. NATURE, 1997, 387 (6632) : 516 - 519
  • [6] Defect in multiple cell cycle checkpoints in ataxia-telangiectasia postirradiation
    Beamish, H
    Williams, R
    Chen, P
    Lavin, MF
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (34) : 20486 - 20493
  • [7] IONIZING-RADIATION AND CELL-CYCLE PROGRESSION IN ATAXIA-TELANGIECTASIA
    BEAMISH, H
    KHANNA, KK
    LAVIN, MF
    [J]. RADIATION RESEARCH, 1994, 138 (01) : S130 - S133
  • [8] TRF1 is a dimer and bends telomeric DNA
    Bianchi, A
    Smith, S
    Chong, L
    Elias, P
    deLange, T
    [J]. EMBO JOURNAL, 1997, 16 (07) : 1785 - 1794
  • [9] Activation of the ATM kinase by ionizing radiation and phosphorylation of p53
    Canman, CE
    Lim, DS
    Cimprich, KA
    Taya, Y
    Tamai, K
    Sakaguchi, K
    Appella, E
    Kastan, MB
    Siliciano, JD
    [J]. SCIENCE, 1998, 281 (5383) : 1677 - 1679
  • [10] Altering telomere structure allows telomerase to act in yeast lacking ATM kinases
    Chan, SWL
    Chang, J
    Prescott, J
    Blackburn, EH
    [J]. CURRENT BIOLOGY, 2001, 11 (16) : 1240 - 1250