Generation of chaotic beats

被引:16
作者
Grygiel, K [1 ]
Szlachetka, P [1 ]
机构
[1] Adam Mickiewicz Univ Poznan, Nonlinear Opt Div, Inst Phys, PL-61614 Poznan, Poland
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2002年 / 12卷 / 03期
关键词
hyperchaos; beats; on-off intermittency;
D O I
10.1142/S0218127402004590
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that coupled Kerr and Duffing oscillators with small nonlinearities and strong external pumping can generate chaotic and hyperchaotic beats. The appearance of chaos within beats depends strongly on the type of interactions between the nonlinear oscillators. To indicate chaotic behavior of the system we make use of the Lyapunov exponents. The structure of chaotic beats can be qualitatively different - the envelope function can be smooth if the system is undamped or can give the impression of noise structure in the presence of strong damping and nonlinear interactions between the individual oscillators. The systems considered can be used, in practice, as generators of chaotic beats with chaotically modulated envelopes and frequencies.
引用
收藏
页码:635 / 644
页数:10
相关论文
共 29 条
[1]   Quantum theory of two-mode nonlinear directional couplers [J].
Chefles, A ;
Barnett, SM .
JOURNAL OF MODERN OPTICS, 1996, 43 (04) :709-727
[2]   PERIODIC SPONTANEOUS COLLAPSE AND REVIVAL IN A SIMPLE QUANTUM MODEL [J].
EBERLY, JH ;
NAROZHNY, NB ;
SANCHEZMONDRAGON, JJ .
PHYSICAL REVIEW LETTERS, 1980, 44 (20) :1323-1326
[3]   Quantum-phase properties of the Kerr couplers [J].
Fiurásek, J ;
Krepelka, J ;
Perina, J .
OPTICS COMMUNICATIONS, 1999, 167 (1-6) :115-124
[4]   STOCHASTIC RESONANCE WITHOUT SYMMETRY-BREAKING [J].
GAMMAITONI, L ;
MARCHESONI, F ;
SANTUCCI, S .
PHYSICS LETTERS A, 1994, 195 (02) :116-120
[5]   Stochastic resonance [J].
Gammaitoni, L ;
Hanggi, P ;
Jung, P ;
Marchesoni, F .
REVIEWS OF MODERN PHYSICS, 1998, 70 (01) :223-287
[6]   Chaos and hyperchaos in coupled Kerr oscillators [J].
Grygiel, K ;
Szlachetka, P .
OPTICS COMMUNICATIONS, 2000, 177 (1-6) :425-431
[7]   EXPERIMENTAL AND NUMERICAL EVIDENCE FOR RIDDLED BASINS IN COUPLED CHAOTIC SYSTEMS [J].
HEAGY, JF ;
CARROLL, TL ;
PECORA, LM .
PHYSICAL REVIEW LETTERS, 1994, 73 (26) :3528-3531
[8]   SELF-TRAPPING ON A DIMER - TIME-DEPENDENT SOLUTIONS OF A DISCRETE NONLINEAR SCHRODINGER-EQUATION [J].
KENKRE, VM ;
CAMPBELL, DK .
PHYSICAL REVIEW B, 1986, 34 (07) :4959-4961
[9]   Quantum statistics and dynamics of Kerr nonlinear couplers [J].
Korolkova, N ;
Perina, J .
OPTICS COMMUNICATIONS, 1997, 136 (1-2) :135-149
[10]   SQUEEZED VACUUM AS AN ACCELERATOR OF REVIVALS IN THE DICKE-MODEL [J].
KOZIEROWSKI, M ;
CHUMAKOV, SM .
PHYSICAL REVIEW A, 1995, 52 (05) :4293-4296