Treatment of coliphage MS2 with palladium-modified nitrogen-doped titanium oxide photocatalyst illuminated by visible light

被引:61
作者
Li, Qi [1 ,3 ]
Page, Martin A. [2 ,3 ]
Marinas, Benito J. [2 ,3 ]
Shang, Jian Ku [1 ,3 ]
机构
[1] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA
[3] Univ Illinois, Ctr Adv Mat Purificat Water Syst, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
10.1021/es7026086
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A palladium-modified nitrogen-doped titanium oxide (TiON/PdO) photocatalytic fiber was synthesized on a mesoporous activated carbon fiber template by a sol-gel process. Calcination of the coated fibers resulted in a macroporous interfiber structure and mesoporous photocatalyst coating. Atomic ratios of major photocatalyst constituents determined by X-ray photoelectron spectroscopy analyses were N/Ti approximate to 0.1 and Pd/Ti approximate to 0.03. X-ray diffraction analyses revealed that the photocatalyst had an anatase structure and palladium additive was present as PdO. Triplicate batch experiments performed with MS2 phage (average initial concentration of 3 x 108 plaque forming units/mL) and TiON/PdO photocatalyst at a dose of 0.1 g/L under dark conditions revealed the occurrence of virus adsorption on the photocatalyst fibers at a rate that resulted in equilibrium within 1 h of contact time with corresponding virion removals of 95.4-96.7%. Subsequent illumination of the dark-equilibrated samples with visible light (wavelengths greater than 400 nm and average intensity of 40 mW/cm(2)) resulted in additional virus removal of 94.5-98.2% within 1 h of additional contact time. By combining adsorption and visible-light photocatalysis, TiON/PdO fibers reached final virus removal rates of 99.75-99.94%. Spin trapping electron paramagnetic resonance (EPR) measurements confirmed the production of-OH radicals by TiON/PdO under visible light illumination, which provided indirect evidence about MS2 phage being potentially inactivated.
引用
收藏
页码:6148 / 6153
页数:6
相关论文
共 57 条
[1]   Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA [J].
Aas, PA ;
Otterlei, M ;
Falnes, PO ;
Vågbo, CB ;
Skorpen, F ;
Akbari, M ;
Sundheim, O ;
Bjorås, M ;
Slupphaug, G ;
Seeberg, E ;
Krokan, HE .
NATURE, 2003, 421 (6925) :859-863
[2]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[3]   RNA bacteriophage capsid-mediated drug delivery and epitope presentation [J].
Brown, WL ;
Mastico, RA ;
Wu, M ;
Heal, KG ;
Adams, CJ ;
Murray, JB ;
Simpson, JC ;
Lord, JM ;
Taylor-Robinson, AW ;
Stockley, PG .
INTERVIROLOGY, 2002, 45 (4-6) :371-380
[4]   Enhanced nitrogen doping in TiO2 nanoparticles [J].
Burda, C ;
Lou, YB ;
Chen, XB ;
Samia, ACS ;
Stout, J ;
Gole, JL .
NANO LETTERS, 2003, 3 (08) :1049-1051
[5]   Different inactivation Behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection [J].
Cho, M ;
Chung, HM ;
Choi, WY ;
Yoon, JY .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (01) :270-275
[6]   Elucidating the porous structure of activated carbon fibers using direct and indirect methods [J].
Daley, MA ;
Tandon, D ;
Economy, J ;
Hippo, EJ .
CARBON, 1996, 34 (10) :1191-1200
[7]   Photochemical activity of nitrogen-doped rutile TiO2(111) in visible light [J].
Diwald, O ;
Thompson, TL ;
Zubkov, T ;
Goralski, EG ;
Walck, SD ;
Yates, JT .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (19) :6004-6008
[8]   The photocatalytic removal of bacterial pollutants from drinking water [J].
Dunlop, PSM ;
Byrne, JA ;
Manga, N ;
Eggins, BR .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2002, 148 (1-3) :355-363
[9]   Photocatalytic decomposition of benzene over TiO2 in a humidified airstream [J].
Einaga, H ;
Futamura, S ;
Ibusuki, T .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (20) :4903-4908
[10]   HETEROGENEOUS PHOTOCATALYTIC OXIDATION OF CYANIDE AND SULFITE IN AQUEOUS-SOLUTIONS AT SEMICONDUCTOR POWDERS [J].
FRANK, SN ;
BARD, AJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1977, 81 (15) :1484-1488