AMIP Simulation with the CAM4 Spectral Element Dynamical Core

被引:56
作者
Evans, K. J. [1 ]
Lauritzen, P. H. [2 ]
Mishra, S. K. [2 ]
Neale, R. B. [2 ]
Taylor, M. A. [3 ]
Tribbia, J. J. [2 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN USA
[2] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
[3] Sandia Natl Labs, Albuquerque, NM 87185 USA
基金
美国国家科学基金会;
关键词
ATMOSPHERIC-MODEL; FINITE-VOLUME; CONVERGENCE; RESOLUTION; PERFORMANCE; PARAMETERIZATIONS; PRECIPITATION; CLIMATOLOGY; TEMPERATURE; REANALYSIS;
D O I
10.1175/JCLI-D-11-00448.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The authors evaluate the climate produced by the Community Climate System Model, version 4, running with the new spectral element atmospheric dynamical core option. The spectral element method is configured to use a cubed-sphere grid, providing quasi-uniform resolution over the sphere and increased parallel scalability and removing the need for polar filters. It uses a fourth-order accurate spatial discretization that locally conserves mass and total energy. Using the Atmosphere Model Intercomparison Project protocol, the results from the spectral element dynamical core are compared with those produced by the default finite-volume dynamical core and with observations. Even though the two dynamical cores are quite different, their simulated climates are remarkably similar. When compared with observations, both models have strengths and weaknesses but have nearly identical root-mean-square errors and the largest biases show little sensitivity to the dynamical core. The spectral element core does an excellent job reproducing the atmospheric kinetic energy spectra, including fully capturing the observed Nastrom-Gage transition when running at 0.125 degrees resolution.
引用
收藏
页码:689 / 709
页数:21
相关论文
共 92 条
  • [1] Adams J.C., 1997, Note NCAR/TN-436-STR
  • [2] Adler RF, 2003, J HYDROMETEOROL, V4, P1147, DOI 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO
  • [3] 2
  • [4] [Anonymous], TN439EDD NCAR
  • [5] Progress towards accelerating HOMME on hybrid multi-core systems
    Carpenter, I.
    Archibald, R. K.
    Evans, K. J.
    Larkin, J.
    Micikevicius, P.
    Norman, M.
    Rosinski, J.
    Schwarzmeier, J.
    Taylor, M. A.
    [J]. INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2013, 27 (03) : 335 - 347
  • [6] The Community Climate System Model version 3 (CCSM3)
    Collins, William D.
    Bitz, Cecilia M.
    Blackmon, Maurice L.
    Bonan, Gordon B.
    Bretherton, Christopher S.
    Carton, James A.
    Chang, Ping
    Doney, Scott C.
    Hack, James J.
    Henderson, Thomas B.
    Kiehl, Jeffrey T.
    Large, William G.
    McKenna, Daniel S.
    Santer, Benjamin D.
    Smith, Richard D.
    [J]. JOURNAL OF CLIMATE, 2006, 19 (11) : 2122 - 2143
  • [7] A new flexible coupler for earth system modeling developed for CCSM4 and CESM1
    Craig, Anthony P.
    Vertenstein, Mariana
    Jacob, Robert
    [J]. INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2012, 26 (01) : 31 - 42
  • [8] High-resolution mesh convergence properties and parallel efficiency of a spectral element atmospheric dynamical core
    Dennis, J
    Fournier, A
    Spotz, WF
    St-Cyr, A
    Taylor, MA
    Thomas, SJ
    Tufo, H
    [J]. INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2005, 19 (03) : 225 - 235
  • [9] Dennis J. M., 2003, P WORKSH MASS PAR PR, DOI [10.1109/IPDPS.2003.1213486, DOI 10.1109/IPDPS.2003.1213486]
  • [10] CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model
    Dennis, John M.
    Edwards, Jim
    Evans, Katherine J.
    Guba, Oksana
    Lauritzen, Peter H.
    Mirin, Arthur A.
    St-Cyr, Amik
    Taylor, Mark A.
    Worley, Patrick H.
    [J]. INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2012, 26 (01) : 74 - 89