Molecular mechanics of cardiac titin's PEVK and N2B spring elements

被引:118
作者
Watanabe, K
Nair, P
Labeit, D
Kellermayer, MSZ
Greaser, M
Labeit, S
Granzier, H [1 ]
机构
[1] Washington State Univ, Dept Vet & Comparat Anat Pharmacol & Physiol, Pullman, WA 99164 USA
[2] Univ Hosp Mannheim, Dept Anesthesiol & Intens Operat Med, D-68135 Mannheim, Germany
[3] Univ Pecs, Sch Med, Dept Biophys, H-7624 Pecs, Hungary
[4] Univ Wisconsin, Muscle Biol Lab, Madison, WI 53706 USA
关键词
D O I
10.1074/jbc.M200356200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Titin is a giant elastic protein that is responsible for the majority of passive force generated by the myocardium. Titin's force is derived from its extensible I-band region, which, in the cardiac isoform, comprises three main extensible elements: tandem Ig segments, the PEVK domain, and the N2B unique sequence (N2B-Us). Using atomic force microscopy, we characterized the single molecule force-extension curves of the PEVK and N2B-Us spring elements, which together are responsible for physiological levels of passive force in moderately to highly stretched myocardium. Stretch-release force-extension curves of both the PEVK domain and N2B-Us displayed little hysteresis: the stretch and release data nearly overlapped. The force-extension curves closely followed worm-like chain behavior. Histograms of persistence length (measure of chain bending rigidity) indicated that the single molecule persistence lengths are similar to1.4 and similar to0.65 nm for the PEVK domain and N2B-Us, respectively. Using these mechanical characteristics and those determined earlier for the tandem Ig segment (assuming folded Ig domains), we modeled the cardiac titin extensible region in the sarcomere and calculated the extension of the various spring elements and the forces generated by titin, both as a function of sarcomere length. In the physiological sarcomere length range, predicted values and those obtained experimentally were indistinguishable.
引用
收藏
页码:11549 / 11558
页数:10
相关论文
共 43 条
[1]   The complete gene sequence of titin, expression of an unusual ≈700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system [J].
Bang, ML ;
Centner, T ;
Fornoff, F ;
Geach, AJ ;
Gotthardt, M ;
McNabb, M ;
Witt, CC ;
Labeit, D ;
Gregorio, CC ;
Granzier, H ;
Labeit, S .
CIRCULATION RESEARCH, 2001, 89 (11) :1065-1072
[2]  
BELL GI, 1978, SCIENCE, V200, P618, DOI 10.1126/science.347575
[3]   ENTROPIC ELASTICITY OF LAMBDA-PHAGE DNA [J].
BUSTAMANTE, C ;
MARKO, JF ;
SIGGIA, ED ;
SMITH, S .
SCIENCE, 1994, 265 (5178) :1599-1600
[4]   Mechanical design of proteins-studied by single-molecule force spectroscopy and protein engineering [J].
Carrion-Vazquez, M ;
Oberhauser, AF ;
Fisher, TE ;
Marszalek, PE ;
Li, HB ;
Fernandez, JM .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2000, 74 (1-2) :63-91
[5]   Differential expression of cardiac titin isoforms and modulation of cellular stiffness [J].
Cazorla, O ;
Freiburg, A ;
Helmes, M ;
Centner, T ;
McNabb, M ;
Wu, Y ;
Trombitás, K ;
Labeit, S ;
Granzier, H .
CIRCULATION RESEARCH, 2000, 86 (01) :59-67
[6]   Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes [J].
Cazorla, O ;
Wu, YM ;
Irving, TC ;
Granzier, H .
CIRCULATION RESEARCH, 2001, 88 (10) :1028-1035
[7]   The C-terminal half of the anti-sigma factor, FlgM, becomes structured when bound to its target, sigma(28) [J].
Daughdrill, GW ;
Chadsey, MS ;
Karlinsey, JE ;
Hughes, KT ;
Dahlquist, FW .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (04) :285-291
[8]  
Freiburg A, 2000, CIRC RES, V86, P1114
[9]  
GRANZIER H, 2002, IN PRESS J PHYSL LON
[10]   PASSIVE TENSION IN CARDIAC-MUSCLE - CONTRIBUTION OF COLLAGEN, TITIN, MICROTUBULES, AND INTERMEDIATE FILAMENTS [J].
GRANZIER, HL ;
IRVING, TC .
BIOPHYSICAL JOURNAL, 1995, 68 (03) :1027-1044