Background error covariance estimation for atmospheric CO2 data assimilation

被引:22
作者
Chatterjee, Abhishek [1 ,2 ]
Engelen, Richard J. [3 ]
Kawa, Stephan R. [4 ]
Sweeney, Colm [5 ,6 ]
Michalak, Anna M. [2 ]
机构
[1] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA
[2] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA
[3] European Ctr Medium Range Weather Forecasts, Reading, Berks, England
[4] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[5] NOAA, Earth Syst Res Lab, Boulder, CO USA
[6] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO USA
基金
美国国家航空航天局;
关键词
background error covariance matrix; variational data assimilation; atmospheric CO2; spatial and temporal CO2 variations; GOSAT CO2; NMC method; INFRARED SATELLITE RADIANCES; RETRIEVAL ALGORITHM; CARBON-DIOXIDE; SYSTEM; STATISTICS; TRANSPORT; MODEL; STRATOSPHERE; SINKS; SPECTROMETER;
D O I
10.1002/jgrd.50654
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In any data assimilation framework, the background error covariance statistics play the critical role of filtering the observed information and determining the quality of the analysis. For atmospheric CO2 data assimilation, however, the background errors cannot be prescribed via traditional forecast or ensemble-based techniques as these fail to account for the uncertainties in the carbon emissions and uptake, or for the errors associated with the CO2 transport model. We propose an approach where the differences between two modeled CO2 concentration fields, based on different but plausible CO2 flux distributions and atmospheric transport models, are used as a proxy for the statistics of the background errors. The resulting error statistics: (1) vary regionally and seasonally to better capture the uncertainty in the background CO2 field, and (2) have a positive impact on the analysis estimates by allowing observations to adjust predictions over large areas. A state-of-the-art four-dimensional variational (4D-VAR) system developed at the European Centre for Medium-Range Weather Forecasts (ECMWF) is used to illustrate the impact of the proposed approach for characterizing background error statistics on atmospheric CO2 concentration estimates. Observations from the Greenhouse gases Observing SATellite IBUKI (GOSAT) are assimilated into the ECMWF 4D-VAR system along with meteorological variables, using both the new error statistics and those based on a traditional forecast-based technique. Evaluation of the four-dimensional CO2 fields against independent CO2 observations confirms that the performance of the data assimilation system improves substantially in the summer, when significant variability and uncertainty in the fluxes are present.
引用
收藏
页码:10140 / 10154
页数:15
相关论文
共 69 条
[1]   A global evaluation of the regional spatial variability of column integrated CO2 distributions [J].
Alkhaled, Alanood A. ;
Michalak, Anna M. ;
Kawa, S. Randolph ;
Olsen, Seth C. ;
Wang, Jih-Wang .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D20)
[2]   Empirical age spectra for the midlatitude lower stratosphere from in situ observations of CO2:: Quantitative evidence for a subtropical "barrier" to horizontal transport [J].
Andrews, AE ;
Boering, KA ;
Wofsy, SC ;
Daube, BC ;
Jones, DB ;
Alex, S ;
Loewenstein, M ;
Podolske, JR ;
Strahan, SE .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D10) :10257-10274
[3]   AIRS/AMSU/HSB on the aqua mission: Design, science objectives, data products, and processing systems [J].
Aumann, HH ;
Chahine, MT ;
Gautier, C ;
Goldberg, MD ;
Kalnay, E ;
McMillin, LM ;
Revercomb, H ;
Rosenkranz, PW ;
Smith, WL ;
Staelin, DH ;
Strow, LL ;
Susskind, J .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (02) :253-264
[4]   Carbon source/sink information provided by column CO2 measurements from the Orbiting Carbon Observatory [J].
Baker, D. F. ;
Boesch, H. ;
Doney, S. C. ;
O'Brien, D. ;
Schimel, D. S. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (09) :4145-4165
[5]   A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics [J].
Bannister, R. N. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2008, 134 (637) :1971-1996
[6]   A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances [J].
Bannister, R. N. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2008, 134 (637) :1951-1970
[7]   The use of an ensemble approach to study the background error covariances in a global NWP model [J].
Belo Pereira, Margarida ;
Berre, Loik .
MONTHLY WEATHER REVIEW, 2006, 134 (09) :2466-2489
[8]   Background error statistics for aerosols [J].
Benedetti, Angela ;
Fisher, Michael .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2007, 133 (623) :391-405
[9]   The representation of the analysis effect in three error simulation techniques [J].
Berre, L ;
Stefanescu, SE ;
Pereira, MB .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2006, 58 (02) :196-209
[10]   Filtering of Background Error Variances and Correlations by Local Spatial Averaging: A Review [J].
Berre, Loik ;
Desroziers, Gerald .
MONTHLY WEATHER REVIEW, 2010, 138 (10) :3693-3720