First-order Freedericksz transition and front propagation in a liquid crystal light valve with feedback

被引:30
作者
Clerc, MG
Nagaya, T
Petrossian, A
Residori, S
Riera, CS
机构
[1] Univ Chile, Fac Ciencias Fis & Matemat, Dept Fis, Santiago, Chile
[2] Okayama Univ, Fac Engn, Dept Elect & Elect Engn, Okayama 7008530, Japan
[3] Yerevan State Univ, Dept Phys, Yerevan 375049, Armenia
[4] UNSA, Inst Non Lineaire Nice, CNRS, UMR 6618, F-065600 Valbonne, France
[5] CMS, DAMTP, Cambridge CB3 0WA, England
关键词
D O I
10.1140/epjd/e2003-00316-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Freedericksz transition can become subcritical in the presence of a feedback mechanism that leads to the dependence of the local electric field onto the liquid crystal re-orientation angle. We have characterized experimentally the first-order Freedericksz transition in a Liquid Crystal Light Valve with optical feedback. The bistability region is determined, together with the Freedericksz transition point and the Maxwell point. We show the propagation of fronts connecting the different metastable states and we estimate the front velocity. Theoretically, we derive an amplitude equation, valid close to the Freedericksz transition point, which accounts for the subcritical character of the bifurcation.
引用
收藏
页码:435 / 445
页数:11
相关论文
共 37 条
[1]  
AKHMANOV SA, 1988, JETP LETT+, V47, P707
[2]  
[Anonymous], 1990, DISSIPATIVE STRUCTUR, DOI DOI 10.1016/B978-0-08-092445-8.50011-0
[3]   Pattern formation and competition in nonlinear optics [J].
Arecchi, FT ;
Boccaletti, S ;
Ramazza, P .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1999, 318 (1-2) :1-83
[4]   The liquid crystal light valve with optical feedback: A case study in pattern formation [J].
Arecchi, FT ;
Boccaletti, S ;
Ducci, S ;
Pampaloni, E ;
Ramazza, PL ;
Residori, S .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2000, 9 (02) :183-204
[5]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[6]   Domain segregation in a two-dimensional system in the presence of drift [J].
Bragard, J ;
Ramazza, PL ;
Arecchi, FT ;
Boccaletti, S ;
Kramer, L .
PHYSICAL REVIEW E, 2000, 61 (06) :R6045-R6048
[7]   THE GROWTH OF CRYSTALS AND THE EQUILIBRIUM STRUCTURE OF THEIR SURFACES [J].
BURTON, WK ;
CABRERA, N ;
FRANK, FC .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1951, 243 (866) :299-358
[8]   METASTABILITY AND FRONT PROPAGATION IN THE 1ST-ORDER OPTICAL FREEDERICKSZ TRANSITION [J].
CACERES, MO ;
SAGUES, F ;
SANMIGUEL, M .
PHYSICAL REVIEW A, 1990, 41 (12) :6852-6865
[9]  
Chandrasekhar S., 1992, LIQUID CRYSTAL
[10]   First-order Freedericksz transition in the presence of light-driven feedback in nematic liquid crystals [J].
Clerc, MG ;
Residori, S ;
Riera, CS .
PHYSICAL REVIEW E, 2001, 63 (06)