On the formulation of optimization under elastic constraints (with control in mind)

被引:16
作者
BouchonMeunier, B
Kreinovich, V
Lokshin, A
Nguyen, HT
机构
[1] UNIV TEXAS, DEPT COMP SCI, EL PASO, TX 79968 USA
[2] UNIV PARIS 06, LAFORIA IBP, F-75252 PARIS 05, FRANCE
[3] MAGELLAN SYST, SAN DIMAS, CA 91773 USA
[4] NEW MEXICO STATE UNIV, DEPT MATH SCI, LAS CRUCES, NM 88003 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
application and modelling; decision making; control theory; mathematical programming;
D O I
10.1016/0165-0114(96)88181-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a basic survey of various approaches to defining the maximum point of a (crisp) numerical function over a fuzzy set. This survey is based on several unifying ideas, and includes original comparison results. Motivations and applications will be drawn mainly from control.
引用
收藏
页码:5 / 29
页数:25
相关论文
共 80 条
[1]  
Abello J., 1994, NAFIPS/IFIS/NASA '94. Proceedings of the First International Joint Conference of the North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intelligent Systems Conference, and the NASA Joint Technology Workshop on Neural Networks and Fuzzy Logic (Cat. No.94TH8006), P331, DOI 10.1109/IJCF.1994.375093
[2]   A GENERALIZED-APPROACH TO FUZZY OPTIMIZATION [J].
ANGELOV, P .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 1994, 9 (03) :261-268
[3]  
[Anonymous], 1991, P 4 U NEW BRUNSWICK
[4]  
[Anonymous], 1988, POSSIBILITY THEORY A
[5]  
[Anonymous], 1991, FUZZY SET THEORY ITS
[6]  
[Anonymous], 1990, APPL MATH LETT, V3, P37
[7]   FUZZY POWER SETS AND FUZZY IMPLICATION OPERATORS [J].
BANDLER, W ;
KOHOUT, L .
FUZZY SETS AND SYSTEMS, 1980, 4 (01) :13-30
[8]  
BELLMAN RE, 1970, MANAGE SCI B-APPL, V17, pB141
[9]   FUZZY-PROGRAMMING APPROACH TO MULTICRITERIA DECISION-MAKING TRANSPORTATION PROBLEM [J].
BIT, AK ;
BISWAL, MP ;
ALAM, SS .
FUZZY SETS AND SYSTEMS, 1992, 50 (02) :135-141
[10]  
Blin J. M., 1973, Journal of Cybernetics, V3, P28, DOI 10.1080/01969727308545911