Projector on physical states in loop quantum gravity

被引:56
作者
Rovelli, C
机构
[1] CNRS Marseille Luminy, Ctr Phys Theor, F-13288 Marseille, France
[2] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
来源
PHYSICAL REVIEW D | 1999年 / 59卷 / 10期
关键词
D O I
10.1103/PhysRevD.59.104015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct the operator that projects on the physical states in loop quantum gravity. To this aim, we consider a diffeomorphism-invariant functional integral over scalar functions. The construction defines a covariant, Feynman-like, spacetime formalism for quantum gravity and relates this theory to the spin foam models. We also discuss how expectation values of the physical quantity can be computed. [S0556-2821(99)04210-1].
引用
收藏
页数:12
相关论文
共 55 条
[1]  
[Anonymous], 1984, RELATIVITY GROUPS TO
[2]   NEW VARIABLES FOR CLASSICAL AND QUANTUM-GRAVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW LETTERS, 1986, 57 (18) :2244-2247
[3]   QUANTIZATION OF DIFFEOMORPHISM INVARIANT THEORIES OF CONNECTIONS WITH LOCAL DEGREES OF FREEDOM [J].
ASHTEKAR, A ;
LEWANDOWSKI, J ;
MAROLF, D ;
MOURAO, J ;
THIEMANN, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) :6456-6493
[4]   Quantum theory of geometry: I. Area operators [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) :A55-A81
[5]   NEW HAMILTONIAN-FORMULATION OF GENERAL-RELATIVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW D, 1987, 36 (06) :1587-1602
[6]   REPRESENTATIONS OF THE HOLONOMY ALGEBRAS OF GRAVITY AND NON-ABELIAN GAUGE-THEORIES [J].
ASHTEKAR, A ;
ISHAM, CJ .
CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (06) :1433-1467
[7]   PROJECTIVE TECHNIQUES AND FUNCTIONAL-INTEGRATION FOR GAUGE-THEORIES [J].
ASHTEKAR, A ;
LEWANDOWSKI, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (05) :2170-2191
[8]  
Ashtekar A., 1998, Adv. Theor. Math. Phys, V1, P388, DOI DOI 10.4310/ATMP.1997.V1.N2.A8
[9]   Diffeomorphism-invariant spin network states [J].
Baez, JC .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 158 (02) :253-266
[10]   Spin networks in Gauge theory [J].
Baez, JC .
ADVANCES IN MATHEMATICS, 1996, 117 (02) :253-272