Homothetic motions of spherically symmetric space-times

被引:26
作者
Ahmad, D
Ziad, M
机构
[1] Department of Mathematics, Quaid-i-Azam University, Islamabad
关键词
D O I
10.1063/1.531994
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The homotheties of spherically symmetric space-times admitting maximal isometry groups larger than SO(3) are found along with their metrics, using the homothety equations and without imposing any restriction on the stress-energy tensor. It turns out that there are either II or 7 or 5 homotheties. For the space-times with SO(3) as a maximal group, solution is provided in the form of derivatives of metric coefficients, which then requires a further classification, for example, according to different types of stress-energy tensor, as has been done by Eardley [Commun. Math. Phys. 37, 287 (1974)], Cahill and Taub [Commun. Math. Phys. 21, 1 (1971)], and McIntosh [Phys. Lett. A 50, 429 (1975)]. (C) 1997 America Institute of Physics.
引用
收藏
页码:2547 / 2552
页数:6
相关论文
共 8 条
[1]  
[Anonymous], 1933, CONTINUOUS GROUPS TR
[2]   SPHERICALLY SYMMETRICAL MANIFOLDS WHICH ADMIT 5 ISOMETRIES [J].
AZAD, H ;
ZIAD, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (04) :1908-1911
[3]   SPHERICALLY SYMMETRIC SIMILARITY SOLUTIONS OF EINSTEIN FIELD EQUATIONS FOR A PERFECT FLUID [J].
CAHILL, ME ;
TAUB, AH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1971, 21 (01) :1-&
[4]   SELF-SIMILAR SPACETIMES - GEOMETRY AND DYNAMICS [J].
EARDLEY, DM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 37 (04) :287-309
[5]  
FUBINI G, 1903, ATTI R ACCAD SCI TOR, V38, P404
[6]   THE CLASSIFICATION OF SPHERICALLY SYMMETRICAL SPACE-TIMES [J].
QADIR, A ;
ZIAD, M .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1995, 110 (03) :317-334
[7]  
YEGOROEV LP, 1955, THESIS MOSCOW STATE
[8]  
ZIAD M, 1990, THESIS QUAIDIAZAM U