Thermodynamic modeling of creep mechanical behaviour by non linear relaxations

被引:8
作者
Ayadi, Z
Marceron, P
Schmitt, JF
Cunat, C
机构
[1] Ecole Europeenne Ingenieur Genie Mat, Lab Sci & Genie Surfaces, UMR 7570 CNRS, F-54010 Nancy, France
[2] Ecole Natl Super Elect & Mecan, Lab Energet & Mecan Theor & Appl, UMR 7563 CNRS, F-54500 Vandoeuvre Nancy, France
关键词
D O I
10.1051/epjap:1999177
中图分类号
O59 [应用物理学];
学科分类号
摘要
For some years, Cunat [1] has developed a formalism based on the thermodynamics of irreversible processes in order to describe the behaviour of continuous media which are not, in the equilibrium state. This thermodynamics of relaxation has led to a very general modeling called "Distribution of Non-Linear Relaxations" (DNLR) modeling. This theoretical approach is currently applied in solid mechanics for various ways and sequences of loading. In this paper, the application to primary and secondary unidirectional creep is presented. Only five parameters whose physical meaning is known are necessary. We analyze the role of each of them and indicate a process of identification from experimental data.
引用
收藏
页码:229 / 235
页数:7
相关论文
共 27 条
[1]  
AYADI Z, 1995, 12 FRENCH MECH C STR, P277
[2]  
AYADI Z, 1995, THESIS NANCY
[3]   Thermodynamic relaxation. A contribution to constitutive laws for complex materials. [J].
Cunat, C .
REVUE GENERALE DE THERMIQUE, 1996, 35 (418-19) :680-685
[4]   THERMODYNAMIC TREATMENT OF RELAXATION IN FROZEN-IN SYSTEMS - UNIVERSALITY OF THE DISTRIBUTION LAW FOR RELAXATION-TIMES [J].
CUNAT, C .
ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE NEUE FOLGE, 1988, 157 :419-423
[5]   A THERMODYNAMIC THEORY OF RELAXATION BASED ON A DISTRIBUTION OF NONLINEAR PROCESSES [J].
CUNAT, C .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1991, 131 :196-199
[6]   A RELAXATION THEORY TO EXPLAIN THE RHEOLOGY OF ELASTOPLASTIC MATERIALS [J].
CUNAT, C .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1991, 131 :812-815
[7]   RELAXATION PARAMETERS TO SIMULATE THE CHANGES IN MAGNETOSTRICTION IN AMORPHOUS MAGNETIC-ALLOYS [J].
CUNAT, C ;
HILZINGER, HR ;
HERZER, G .
MATERIALS SCIENCE AND ENGINEERING, 1988, 97 :497-500
[8]  
CUNAT C, 1990, 7 INT C RAP QUENCH M
[9]  
CUNAT C, 1985, THESIS NANCY
[10]  
CUNAT C, 1992, T TECH PUB