The application of analysis of variance (ANOVA) to different experimental designs in optometry

被引:112
作者
Armstrong, RA [1 ]
Eperjesi, F [1 ]
Gilmartin, B [1 ]
机构
[1] Aston Univ, Birmingham B4 7ET, W Midlands, England
关键词
analysis of variance (ANOVA); experimental design; factorial experimental design; random effect factor; randomised blocks; repeated measures design; split-plot design;
D O I
10.1046/j.1475-1313.2002.00020.x
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Analysis of variance (ANOVA) is the most efficient method available for the analysis of experimental data. Analysis of variance is a method of considerable complexity and subtlety, with many different variations, each of which applies in a particular experimental context. Hence, it is possible to apply the wrong type Of ANOVA to data and, therefore, to draw an erroneous conclusion from an experiment. This article reviews the types Of ANOVA most likely to arise in clinical experiments in optometry including the one-way ANOVA ('fixed' and 'random effect' models), two-way ANOVA in randomised blocks, three-way ANOVA, and factorial experimental designs (including the varieties known as 'split-plot' and 'repeated measures'). For each ANOVA, the appropriate experimental design is described, a statistical model is formulated, and the advantages and limitations of each type of design discussed. In addition, the problems of non-conformity to the statistical model and determination of the number of replications are considered.
引用
收藏
页码:248 / 256
页数:9
相关论文
共 7 条
[1]  
Armitage P, 1987, Statistical methods in medical research, V2nd
[2]  
Armstrong RA, 2000, OPHTHAL PHYSL OPT, V20, P235, DOI 10.1016/S0275-5408(99)00064-2
[3]  
Cochran W.G. G.M. Cox., 1957, Experimental Design
[4]  
Freese F., 1984, STAT LAND MANAGERS
[5]  
RIDGMAN WJ, 1975, EXPT BIOL
[7]  
Snedecor G. W., 1980, STAT METHODS