Tile-Level Annotation of Satellite Images Using Multi-Level Max-Margin Discriminative Random Field

被引:25
作者
Hu, Fan [1 ]
Yang, Wen [1 ]
Chen, Jiayu [1 ]
Sun, Hong [1 ,2 ]
机构
[1] Wuhan Univ, Sch Elect Informat, Signal Proc Lab, Wuhan 430072, Peoples R China
[2] TELECOM ParisTech, TSI Dept, F-75013 Paris, France
关键词
satellite images annotation; topic model; MedLDA; multi-level max-margin; conditional random field;
D O I
10.3390/rs5052275
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper proposes a multi-level max-margin discriminative analysis (M(3)DA) framework, which takes both coarse and fine semantics into consideration, for the annotation of high-resolution satellite images. In order to generate more discriminative topic-level features, the M(3)DA uses the maximum entropy discrimination latent Dirichlet Allocation (MedLDA) model. Moreover, for improving the spatial coherence of visual words neglected by M(3)DA, conditional random field (CRF) is employed to optimize the soft label field composed of multiple label posteriors. The framework of M(3)DA enables one to combine word-level features (generated by support vector machines) and topic-level features (generated by MedLDA) via the bag-of-words representation. The experimental results on high-resolution satellite images have demonstrated that, using the proposed method can not only obtain suitable semantic interpretation, but also improve the annotation performance by taking into account the multi-level semantics and the contextual information.
引用
收藏
页码:2275 / 2291
页数:17
相关论文
共 16 条
[1]  
[Anonymous], 2007, NIPS
[2]  
[Anonymous], 2001, PROC 18 INT C MACH L
[3]  
Blei D.M., 2007, P 20 INT C NEUR INF, P121, DOI DOI 10.5555/2981562.2981578
[4]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[5]   Fast Approximate Energy Minimization with Label Costs [J].
Delong, Andrew ;
Osokin, Anton ;
Isack, Hossam N. ;
Boykov, Yuri .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2012, 96 (01) :1-27
[6]   Unsupervised learning by probabilistic latent semantic analysis [J].
Hofmann, T .
MACHINE LEARNING, 2001, 42 (1-2) :177-196
[7]   What energy functions can be minimized via graph cuts? [J].
Kolmogorov, V ;
Zabih, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (02) :147-159
[8]   Latent mixture vocabularies for object categorization and segmentation [J].
Larlus, Diane ;
Jurie, Frederic .
IMAGE AND VISION COMPUTING, 2009, 27 (05) :523-534
[9]   Semantic Annotation of Satellite Images Using Latent Dirichlet Allocation [J].
Lienou, Marie ;
Maitre, Henri ;
Datcu, Mihai .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (01) :28-32
[10]  
Verbeek J., 2007, PROC IEEE C COMPUTER, P1, DOI DOI 10.1109/CVPR.2007.383098