Quantum games and quantum strategies

被引:746
作者
Eisert, J [1 ]
Wilkens, M
Lewenstein, M
机构
[1] Univ Potsdam, Inst Phys, D-14469 Potsdam, Germany
[2] Univ Hannover, Inst Theoret Phys, D-31067 Hannover, Germany
关键词
D O I
10.1103/PhysRevLett.83.3077
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the quantization of nonzero sum games. For the particular case of the Prisoners' Dilemma we show that this game ceases to pose a dilemma if quantum strategies are allowed for. We also construct a particular quantum strategy which always gives reward if played against any classical strategy.
引用
收藏
页码:3077 / 3080
页数:4
相关论文
共 11 条
[1]  
Axelrod R, 2006, EVOLUTION COOPERATIO
[2]  
Bennett C. H., 1992, Journal of Cryptology, V5, P3, DOI 10.1007/BF00191318
[3]  
Dawkins R., 1976, The Selfish Gene
[4]   QUANTUM COMPUTATIONAL NETWORKS [J].
DEUTSCH, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1989, 425 (1868) :73-90
[5]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[6]   Quantum cloning, eavesdropping and Bell's inequality [J].
Gisin, N ;
Huttner, B .
PHYSICS LETTERS A, 1997, 228 (1-2) :13-21
[7]   Quantum gambling [J].
Goldenberg, L ;
Vaidman, L ;
Wiesner, S .
PHYSICAL REVIEW LETTERS, 1999, 82 (16) :3356-3359
[8]   Quantum strategies [J].
Meyer, DA .
PHYSICAL REVIEW LETTERS, 1999, 82 (05) :1052-1055
[9]  
Myerson R.B., 2013, GAME THEORY
[10]  
von Neumann J, 1947, THEORY GAMES EC BEHA, V2