On the Measurement of Heat Waves

被引:802
作者
Perkins, S. E. [1 ]
Alexander, L. V. [1 ]
机构
[1] Univ New S Wales, Ctr Excellence Climate Syst Sci, Climate Change Res Ctr, Sydney, NSW 2052, Australia
关键词
Extreme events; Heating; Surface temperature; Surface observations; Trends; EXTREME TEMPERATURE EVENTS; CLIMATE EXTREMES; THERMAL DISCOMFORT; DAILY MAXIMUM; AUSTRALIA; TRENDS; INDEX; PRECIPITATION; PROJECTIONS; ATHENS;
D O I
10.1175/JCLI-D-12-00383.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Despite their adverse impacts, definitions and measurements of heat waves are ambiguous and inconsistent, generally being endemic to only the group affected, or the respective study reporting the analysis. The present study addresses this issue by employing a set of three heat wave definitions, derived from surveying heat-related indices in the climate science literature. The definitions include three or more consecutive days above one of the following: the 90th percentile for maximum temperature, the 90th percentile for minimum temperature, and positive extreme heat factor (EHF) conditions. Additionally, each index is studied using a multiaspect framework measuring heat wave number, duration, participating days, and the peak and mean magnitudes. Observed climatologies and trends computed by Sen's Kendall slope estimator are presented for the Australian continent for two time periods (1951-2008 and 1971-2008). Trends in all aspects and definitions are smaller in magnitude but more significant for 1951-2008 than for 1971-2008. Considerable similarities exist in trends of the yearly number of days participating in a heat wave and yearly heat wave frequency, suggesting that the number of available heat wave days drives the number of events. Larger trends in the hottest part of a heat wave suggest that heat wave intensity is increasing faster than the mean magnitude. Although the direct results of this study cannot be inferred for other regions, the methodology has been designed as such that it is widely applicable. Furthermore, it includes a range of definitions that may be useful for a wide range of systems impacted by heat waves.
引用
收藏
页码:4500 / 4517
页数:18
相关论文
共 56 条
[1]  
Alexander LV, 2007, AUST METEOROL MAG, V56, P1
[2]   Global observed changes in daily climate extremes of temperature and precipitation [J].
Alexander, LV ;
Zhang, X ;
Peterson, TC ;
Caesar, J ;
Gleason, B ;
Tank, AMGK ;
Haylock, M ;
Collins, D ;
Trewin, B ;
Rahimzadeh, F ;
Tagipour, A ;
Kumar, KR ;
Revadekar, J ;
Griffiths, G ;
Vincent, L ;
Stephenson, DB ;
Burn, J ;
Aguilar, E ;
Brunet, M ;
Taylor, M ;
New, M ;
Zhai, P ;
Rusticucci, M ;
Vazquez-Aguirre, JL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D5)
[3]  
[Anonymous], 2011, PROT HUM HLTH SAF SE
[4]   Climate model simulated changes in temperature extremes due to land cover change [J].
Avila, F. B. ;
Pitman, A. J. ;
Donat, M. G. ;
Alexander, L. V. ;
Abramowitz, G. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[5]   Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set [J].
Caesar, J ;
Alexander, L ;
Vose, R .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D5)
[6]   Rising temperature depletes soil moisture and exacerbates severe drought conditions across southeast Australia [J].
Cai, Wenju ;
Cowan, Tim ;
Briggs, Peter ;
Raupach, Michael .
GEOPHYSICAL RESEARCH LETTERS, 2009, 36
[7]  
Collins DA, 2000, AUST METEOROL MAG, V49, P277
[8]  
Colombo AF, 1999, J CLIMATE, V12, P2490, DOI 10.1175/1520-0442(1999)012<2490:CVATFO>2.0.CO
[9]  
2
[10]   A decade of weather extremes [J].
Coumou, Dim ;
Rahmstorf, Stefan .
NATURE CLIMATE CHANGE, 2012, 2 (07) :491-496