Phosphorylation of replication protein a middle subunit (RPA32) leads to a disassembly of the RPA heterotrimer

被引:44
作者
Treuner, K [1 ]
Findeisen, M [1 ]
Strausfeld, U [1 ]
Knippers, R [1 ]
机构
[1] Univ Konstanz, Dept Biol, D-78457 Constance, Germany
关键词
D O I
10.1074/jbc.274.22.15556
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Replication protein A (RPA), the major eukaryotic single-strand specific DNA binding protein, consists of three subunits, RPA70, RPA32, and RPA14. The middle subunit, RPA32, is phosphorylated in a cell cycle-dependent manner. RPA occurs in two nuclear compartments, bound to chromatin or free in the nucleosol, We show here that the chromatin-associated fraction of RPA contains the phosphorylated forms of RPA32, Treatment of chromatin with 0.4 hr NaCl releases bound RPA and causes a separation of the large and the phosphorylated middle RPA subunit, Unmodified RPA in the nucleosolic fraction remains perfectly stable under identical conditions. Phosphorylation is most likely an important determinant of RPA desintegration because dialysis from 0.4 to 0.1 NaCl causes the reformation of trimeric RPA only under dephosphorylating conditions, Biochemical studies with isolated Cyclin-dependent protein kinases showed that cyclin A/CDK1 and cyclin B/CDK1, but not cyclin E/CDK2, can phosphorylate human recombinant RPA in vitro, However, only a small fraction of in vitro phosphorylated RPA desintegrated, suggesting that phosphorylation may be one, but probably not the only, determinant affecting subunit interaction. We speculate that phosphorylation and changes in subunit interaction are required for the proposed role of RPA during the polymerase switch at replication forks.
引用
收藏
页码:15556 / 15561
页数:6
相关论文
共 46 条
[1]  
ADAM SA, 1992, METHOD ENZYMOL, V219, P97
[2]  
[Anonymous], 1988, Antibodies: A Laboratory Manual
[3]  
Blackwell LJ, 1996, MOL CELL BIOL, V16, P4798
[4]   Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA [J].
Bochkarev, A ;
Pfuetzner, RA ;
Edwards, AM ;
Frappier, L .
NATURE, 1997, 385 (6612) :176-181
[5]  
BOUBNOV NV, 1995, MOL CELL BIOL, V15, P5700
[6]   Identification and characterization of the fourth single-stranded-DNA binding domain of replication protein A [J].
Brill, SJ ;
Bastin-Shanower, S .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (12) :7225-7234
[7]   The ATM homologue MEC1 is required for phosphorylation of replication protein A in yeast [J].
Brush, GS ;
Morrow, DM ;
Hieter, P ;
Kelly, TJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (26) :15075-15080
[8]   REVERSAL OF TERMINAL DIFFERENTIATION AND CONTROL OF DNA-REPLICATION - CYCLIN-A AND CDK2 SPECIFICALLY LOCALIZE AT SUBNUCLEAR SITES OF DNA-REPLICATION [J].
CARDOSO, MC ;
LEONHARDT, H ;
NADALGINARD, B .
CELL, 1993, 74 (06) :979-992
[9]   UV LIGHT-INDUCED DNA-SYNTHESIS ARREST IN HELA-CELLS IS ASSOCIATED WITH CHANGES IN PHOSPHORYLATION OF HUMAN SINGLE-STRANDED DNA-BINDING PROTEIN [J].
CARTY, MP ;
ZERNIKKOBAK, M ;
MCGRATH, S ;
DIXON, K .
EMBO JOURNAL, 1994, 13 (09) :2114-2123
[10]   REQUIREMENT FOR THE REPLICATION PROTEIN SSB IN HUMAN DNA EXCISION REPAIR [J].
COVERLEY, D ;
KENNY, MK ;
MUNN, M ;
RUPP, WD ;
LANE, DP ;
WOOD, RD .
NATURE, 1991, 349 (6309) :538-541