Accelerating hydrogen implementation by mass production of a hydrogen bus chassis

被引:9
作者
Ally, Jamie [1 ]
Pryor, Trevor [1 ]
机构
[1] Murdoch Univ, Res Inst Sustainable Energy, Perth, WA, Australia
关键词
Transportation; Hydrogen; Fuel cell; Hydrogen combustion; Alternative energy; INTERNAL-COMBUSTION ENGINE; LIFE-CYCLE ASSESSMENT; FUEL-CELL VEHICLES; ENERGY; TRANSPORTATION; EMISSIONS; SYSTEMS; FUTURE; FLEET; GAS;
D O I
10.1016/j.rser.2007.12.001
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Much of the hydrogen vehicle research to date has been conducted and demonstrated in wealthy nations, with very few exceptions. However, developing economies are largely dependent on public transportation, and struggle with air pollution and energy security concerns. The developing regions are in great need of alternative transportation solutions, and although many alternatives are being explored, hydrogen-fueled vehicles are emerging as one of the only technologies that can meet the demands for lower greenhouse gas emissions, lower emissions of air pollutants, and reduced dependence on imported energy. Many conventional buses in developing regions are built from an imported 'buggy-chassis', which is a functional bus chassis with an engine and other auxiliaries. 'Buggy-chassis' are designed with a very short wheel-base dimension to reduce freight costs as they are often shipped overseas. Domestic companies extend the 'buggy-chassis' to full bus length, build the body and cabin, and install other auxiliary systems. The existing infrastructure of the bus buggy-chassis market can be used to leverage hydrogen technology for mass production. This solution allows developing nations to import a state-of-the-art vehicle, with the possibility for local content in the final delivered product, while maintaining the flexibility for innovative technological developments and promoting hydrogen research within the developing economies. Indeed, a modular series-hybrid drivetrain can be made adaptable to a range of primary power sources such as an internal combustion engine or fuel cell engine. The modular approach provides an opportunity to reduce cost while still providing flexibility for innovation, and allows customers to tailor performance to suit their topographical and operational needs. (c) 2008 Elsevier Ltd All rights reserved.
引用
收藏
页码:616 / 624
页数:9
相关论文
共 40 条
[1]   Fuel economy of hydrogen fuel cell vehicles [J].
Ahluwalia, RK ;
Wang, X ;
Rousseau, A ;
Kumar, R .
JOURNAL OF POWER SOURCES, 2004, 130 (1-2) :192-201
[2]  
ALLY J, 2006, ALT TRANSP EN C
[3]   Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems [J].
Ally, Jamie ;
Pryor, Trevor .
JOURNAL OF POWER SOURCES, 2007, 170 (02) :401-411
[4]  
[Anonymous], INT EN OUTL 2006
[5]  
[Anonymous], COUNTR STUD
[6]  
*BALL POW SYST INC, 2006, BALL FACT SHEET
[7]  
CHANDLER K, 2006, SANTA CLARA VALLEY T
[8]  
CHANDLER K, 2007, SUNLINE TRANSIT AGEN
[9]   Investigation of challenges to the utilization of fuel cell buses in the EU vs transition economies [J].
Chen, Fengzhen ;
Fernandes, T. R. C. ;
Yetano Roche, Maria ;
da Graca Carvalho, Maria .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2007, 11 (02) :357-364
[10]  
COCKROFT C, 2005, 1 YEAR OPERATING SUM