Complexity and asymptotical behavior of a SIRS epidemic model with proportional impulsive vaccination

被引:9
作者
Zeng, GZ [1 ]
Chen, LS
机构
[1] Shaoguan Univ, Dept Math, ShaoGuan 512005, GuangDong, Peoples R China
[2] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
来源
ADVANCES IN COMPLEX SYSTEMS | 2005年 / 8卷 / 04期
关键词
SIRS epidemic model; proportional impulsive vaccination; globally asymptotic; chaos; quasi-periodic solution;
D O I
10.1142/S0219525905000580
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers an SIRS epidemic model with proportional impulsive vaccination, which may inherently oscillate. We study the ratio-dependent impulsive control and obtain the conditions about the basic reproductive number for which the epidemic-elimination solution is globally asymptotic. On the other hand, if the epidemic turns out to be endemic, we study numerically the influences of impulsive vaccination on the periodic oscillation of a system without impulsion and find sophisticated phenomena such as chaos in this case.
引用
收藏
页码:419 / 431
页数:13
相关论文
共 21 条
[1]  
[Anonymous], 2012, Practical numerical algorithms for chaotic systems
[2]  
Bainov D, 1993, IMPULSIVE DIFFERENTI
[3]  
Chen L. S., 1993, Nonlinear Biological Dynamical System
[4]   Stability properties of pulse vaccination strategy in SEIR epidemic model [J].
d'Onofrio, A .
MATHEMATICAL BIOSCIENCES, 2002, 179 (01) :57-72
[5]   Pulse vaccination strategy in the SIR epidemic model: Global asymptotic stable eradication in presence of vaccine failures [J].
D'Onofrio, A .
MATHEMATICAL AND COMPUTER MODELLING, 2002, 36 (4-5) :473-489
[6]  
Davies B., 1999, EXPLORING CHAOS THEO
[7]   Asymptotic behavior of an SI epidemic model with pulse removal [J].
Fuhrman, KM ;
Lauko, IG ;
Pinter, GA .
MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (3-4) :371-386
[8]   CRISES, SUDDEN CHANGES IN CHAOTIC ATTRACTORS, AND TRANSIENT CHAOS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1983, 7 (1-3) :181-200
[9]  
JIN Z, 2001, RES IMPULSIVE ECOLOG
[10]   Dynamic complexities of a Holling I predator-prey model concerning periodic biological and chemical control [J].
Liu, B ;
Zhang, YJ ;
Chen, LS .
CHAOS SOLITONS & FRACTALS, 2004, 22 (01) :123-134