Closely opposed apurinic/apyrimidinic sites are converted to double strand breaks in Escherichia coli even in the absence of exonuclease III, endonuclease IV, nucleotide excision repair and AP lyase cleavage

被引:46
作者
Harrison, L [1 ]
Brame, KL [1 ]
Geltz, LE [1 ]
Landry, AM [1 ]
机构
[1] Louisiana State Univ, Dept Cellular & Mol Physiol, Shreveport, LA 71130 USA
关键词
multiply damaged sites; clustered DNA lesions; ionizing radiation DNA damage; DNA repair; AP endonuclease; AP sites;
D O I
10.1016/j.dnarep.2005.10.009
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Multiply damaged sites (MDSs) consist of two or more damages within 20 base pairs (bps) and are introduced into DNA by ionizing radiation. Using a plasmid assay, we previously demonstrated that repair in Escherichia coli generated a double strand break (DSB) from two closely opposed uracils when uracil DNA glycosylase initiated repair. To identify the enzymes that converted the resulting apurinic/apyrimidinic (AP) sites to DSBs, repair was examined in bacteria deficient in AP site cleavage. Since exonuclease III (xth) and enclonuclease IV (nfo) mutant bacteria were able to introduce DSBs at the MDSs, we generated unique bacterial mutants deficient in UvrA, Xth and Nfo. However, the additional disruption of nucleotide excision repair (NER) did not prevent DSB formation. xth(-)nfo(-)rifi(-) bacteria also converted the MDSs to DSBs, ruling out enclonuclease V as the candidate AP enclonuclease. By using MDSs containing tetrahydrofuran (an AP site analog), it was determined that even in the absence of Xth, Nfo, NER and AP lyase cleavage, DSBs were formed from closely opposed AP sites. This finding implies that there is an unknown enzyme/repair pathway for MDSs, and multiple underlying repair systems in cells that can process closely opposed DNA damage into lethal lesions following exposure to ionizing radiation. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:324 / 335
页数:12
相关论文
共 47 条
[1]   Thymine metabolism and thymineless death in prokaryotes and eukaryotes [J].
Ahmad, SI ;
Kirk, SH ;
Eisenstark, A .
ANNUAL REVIEW OF MICROBIOLOGY, 1998, 52 :591-625
[2]  
Blaisdell JO, 2001, RADIAT PROT DOSIM, V97, P25, DOI 10.1093/oxfordjournals.rpd.a006634
[3]   Tandem base lesions are generated by hydroxyl radical within isolated DNA in aerated aqueous solution [J].
Bourdat, AG ;
Douki, T ;
Frelon, S ;
Gasparutto, D ;
Cadet, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (19) :4549-4556
[4]   Tandem lesions and other products in X-irradiated DNA oligomers [J].
Box, HC ;
Budzinski, EE ;
Dawidzik, JB ;
Wallace, JC ;
Iijima, H .
RADIATION RESEARCH, 1998, 149 (05) :433-439
[5]  
CHAUDHRY MA, 1995, J MOL BIOL, V249, P914
[6]   DNA glycosylases [J].
Cunningham, RP .
MUTATION RESEARCH-DNA REPAIR, 1997, 383 (03) :189-196
[7]   ENDONUCLEASE IV (NFO) MUTANT OF ESCHERICHIA-COLI [J].
CUNNINGHAM, RP ;
SAPORITO, SM ;
SPITZER, SG ;
WEISS, B .
JOURNAL OF BACTERIOLOGY, 1986, 168 (03) :1120-1127
[8]   Repair of clustered uracil DNA damages in Escherichia coli [J].
D'souza, DI ;
Harrison, L .
NUCLEIC ACIDS RESEARCH, 2003, 31 (15) :4573-4581
[9]   Clustered DNA damage, influence on damage excision by XRS5 nuclear extracts and Escherichia coli Nth and Fpg proteins [J].
David-Cordonnier, MH ;
Laval, J ;
O'Neill, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (16) :11865-11873
[10]   EXONUCLEASE-III AND ENDONUCLEASE-IV REMOVE 3' BLOCKS FROM DNA-SYNTHESIS PRIMERS IN H2O2-DAMAGED ESCHERICHIA-COLI [J].
DEMPLE, B ;
JOHNSON, A ;
FUNG, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (20) :7731-7735