A hybrid method for solutes in complex solvents: Density functional theory combined with empirical force fields

被引:283
作者
Eichinger, M
Tavan, P
Hutter, J
Parrinello, M
机构
[1] Univ Munich, Inst Med Opt, D-80538 Munich, Germany
[2] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
关键词
D O I
10.1063/1.479049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a hybrid method for molecular dynamics simulations of solutes in complex solvents as represented, for example, by substrates within enzymes. The method combines a quantum mechanical (QM) description of the solute with a molecular mechanics (MM) approach for the solvent. The QM fragment of a simulation system is treated by ab initio density functional theory (DFT) based on plane- wave expansions. Long-range Coulomb interactions within the MM fragment and between the QM and the MM fragment are treated by a computationally efficient fast multipole method. For the description of covalent bonds between the two fragments, we introduce the scaled position link atom method (SPLAM), which removes the shortcomings of related procedures. The various aspects of the hybrid method are scrutinized through test calculations on liquid water, the water dimer, ethane and a small molecule related to the retinal Schiff base. In particular, the extent to which vibrational spectra obtained by DFT for the solute can be spoiled by the lower quality force field of the solvent is checked, including cases in which the two fragments are covalently joined. The results demonstrate that our QM/MM hybrid method is especially well suited for the vibrational analysis of molecules in condensed phase. (C) 1999 American Institute of Physics. [S0021-9606(99)71521- 7].
引用
收藏
页码:10452 / 10467
页数:16
相关论文
共 103 条
[1]   QUANTUM-MECHANICAL AND MOLECULAR MECHANICAL STUDIES ON A MODEL FOR THE DIHYDROXYACETONE PHOSPHATE GLYCERALDEHYDE PHOSPHATE ISOMERIZATION CATALYZED BY TRIOSEPHOSPHATE ISOMERASE (TIM) [J].
ALAGONA, G ;
DESMEULES, P ;
GHIO, C ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1984, 106 (12) :3623-3632
[2]  
ALHAMBRA C, 1998, COMBINED QM MM METHO
[3]  
Allen M. P., 1987, Computer Simulation of Liquids, DOI DOI 10.1093/OSO/9780198803195.001.0001
[4]   Hybrid models for combined quantum mechanical and molecular mechanical approaches [J].
Bakowies, D ;
Thiel, W .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (25) :10580-10594
[5]  
Bakowies D, 1996, J COMPUT CHEM, V17, P87, DOI 10.1002/(SICI)1096-987X(19960115)17:1<87::AID-JCC8>3.0.CO
[6]  
2-X
[7]  
BAKOWIES D, 1994, THESIS U ZURICH
[8]   FREE-ENERGY PERTURBATION METHOD FOR CHEMICAL-REACTIONS IN THE CONDENSED PHASE - A DYNAMICAL-APPROACH BASED ON A COMBINED QUANTUM AND MOLECULAR MECHANICS POTENTIAL [J].
BASH, PA ;
FIELD, MJ ;
KARPLUS, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1987, 109 (26) :8092-8094
[9]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[10]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690