Human cortex development: Estimates of neuronal numbers indicate major loss late during gestation

被引:113
作者
Rabinowicz, T
deCourtenMyers, GM
Petetot, JMC
Xi, GH
delosReyes, E
机构
[1] UNIV CINCINNATI,COLL MED,DEPT PATHOL & LAB MED,CINCINNATI,OH 45267
[2] UNIV LAUSANNE,CH-1015 LAUSANNE,SWITZERLAND
[3] W VIRGINIA UNIV,ROBERT C BYRD HLTH SCI CTR,CHARLESTON,WV 25304
关键词
apoptosis; cerebral cortex; developmental biology; fetal development; human development; neuronal plasticity; neurons;
D O I
10.1097/00005072-199603000-00007
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
This morphometric study explores temporal and topographic changes in the estimated neuronal number in human neocortex during the latter half of gestation and early infancy. Neuronal estimates estimates are calculated from standardized measurements of cortical layer thickness and neuronal density in 6 neocortical regions in 9 human brains ranging from 17 weeks of. gestation to 13 weeks postnatally. Layer thickness increases linearly with age while the average neuronal density first increases, then reaches a maximum at 20 weeks of gestation, and progressively declines. The sum of layer thickness times layer density estimates the number of neurons in a cortical column with a fixed surface area and a length that is equal to the cortical thickness. To derive an estimate of potentially overproduced neurons, the number of neurons in each cortical column was corrected for surface growth and for cortex gyration. These data show that a large percent of cortical neurons present at 20 weeks of gestation are used to populate the expanding cortex. Nevertheless, the growth-corrected data suggest that a substantial overproduction and secondary reduction of cortical neurons takes place mainly during the last quarter of gestation. The corrected mean number of neurons reaches a maximum at 28 weeks of gestation and then declines by similar to 70% to achieve a stable number of neurons around birth. This estimated number of neurons is significantly higher at 28 to 32 weeks of gestation than at 17 to 20 gestational weeks and at 0 to 13 postnatal weeks. These data imply that physiologic neuronal death (apoptosis) may play a major role in early human cortex development.
引用
收藏
页码:320 / 328
页数:9
相关论文
共 32 条
[1]  
Conel JL, 1939, CORTEX NEWBORN
[2]   REGRESSIVE EVENTS IN NEUROGENESIS [J].
COWAN, WM ;
FAWCETT, JW ;
OLEARY, DDM ;
STANFIELD, BB .
SCIENCE, 1984, 225 (4668) :1258-1265
[3]   DEVELOPMENT OF THE SUPERIOR TEMPORAL NEOCORTEX IS ANOMALOUS IN TRISOMY-21 [J].
GOLDEN, JA ;
HYMAN, BT .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 1994, 53 (05) :513-520
[4]  
HAUG H, 1953, ACTA ANAT, V19, P60
[5]  
HESDORFFER HB, 1935, P SOC EXP BIOL MED, V33, P415
[6]  
HEUMANN D, 1978, J HIRNFORSCH, V19, P385
[7]   MORPHOMETRIC STUDY OF HUMAN CEREBRAL-CORTEX DEVELOPMENT [J].
HUTTENLOCHER, PR .
NEUROPSYCHOLOGIA, 1990, 28 (06) :517-527
[8]   TARGETED DISRUPTION OF THE TRKB NEUROTROPHIN RECEPTOR GENE RESULTS IN NERVOUS-SYSTEM LESIONS AND NEONATAL DEATH [J].
KLEIN, R ;
SMEYNE, RJ ;
WURST, W ;
LONG, LK ;
AUERBACH, BA ;
JOYNER, AL ;
BARBACID, M .
CELL, 1993, 75 (01) :113-122
[9]  
KOELFEN W, 1995, DEV MED CHILD NEUROL, V37, P204
[10]  
LEUBA G, 1994, ANAT EMBRYOL, V190, P351