Control of MAPK signaling specificity by a conserved residue in the MEK-binding domain of the yeast scaffold protein Ste5

被引:14
作者
Schwartz, Monica A. [1 ]
Madhani, Hiten D. [1 ]
机构
[1] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
关键词
Ste5; Ste7; scaffold; specificity; activated kinase;
D O I
10.1007/s00294-006-0061-6
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The yeast kinase scaffold Ste5 has been proposed to prevent unwanted cross-talk between the pheromone response pathway and other MAPK cascades. Protein fusion experiments have demonstrated that covalently tethering signaling components to each other or to Ste5 can determine the outcome of signaling. However, these do not fully test the role of scaffolds in signaling specificity, since fusing components precludes differential dissociation of subpopulations. We performed a targeted genetic screen on STE5 and repeatedly identified recessive mutations in a conserved residue, E756, in the Ste7/MEK-binding domain that caused erroneous activation of the filamentation MAPK pathway by pheromone signaling. Mutant cells exhibited a shift in the MAPK activation pattern such that the filamentation MAPK Kss1 was predominately activated in response to pheromone. Velocity sedimentation studies showed that the mutant scaffold was defective in binding to a phosphorylated subpopulation of Ste7. Our data suggest that increased dissociation of activated Ste7 kinase from the mutant scaffold may cause the observed shift in MAPK activation from Fus3 to Kss1 and the resulting loss of specificity. Cross-talk in ste5-E756G cells was due to both increased activation of Kss1 and reduced Fus3-dependent degradation of the filamentation pathway transcription factor Tec1. These studies demonstrate a role for an endogenous scaffold in signaling specificity.
引用
收藏
页码:351 / 363
页数:13
相关论文
共 35 条
[1]   Differential input by Ste5 scaffold and Msg5 phosphatase route a MAPK cascade to multiple outcomes [J].
Andersson, J ;
Simpson, DM ;
Qi, MS ;
Wang, YM ;
Elion, EA .
EMBO JOURNAL, 2004, 23 (13) :2564-2576
[2]   Pheromone-dependent destruction of the Tec1 transcription factor is required for MAP kinase signaling specificity in yeast [J].
Bao, MZ ;
Schwartz, MA ;
Cantin, GT ;
Yates, JR ;
Madhani, HD .
CELL, 2004, 119 (07) :991-1000
[3]   A walk-through of the yeast mating pheromone response pathway (vol 25, pg 1465, 2004) [J].
Bardwell, L .
PEPTIDES, 2005, 26 (02) :337-+
[4]  
Bardwell L, 1996, MOL CELL BIOL, V16, P3637
[5]   MAPK specificity in the yeast pheromone response independent of transcriptional activation [J].
Breitkreutz, A ;
Boucher, L ;
Tyers, M .
CURRENT BIOLOGY, 2001, 11 (16) :1266-+
[6]   Differential regulation of Tec1 by Fus3 and Kss1 confers signaling specificity in yeast development [J].
Brückner, S ;
Kohler, T ;
Braus, GH ;
Heise, B ;
Bolte, M ;
Mesch, HU .
CURRENT GENETICS, 2004, 46 (06) :331-342
[7]   Characterization of Fus3 localization: Active Fus3 localizes in complexes of varying size and specific activity [J].
Choi, KY ;
Kranz, JE ;
Mahanty, SK ;
Park, KS ;
Elion, EA .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (05) :1553-1568
[8]  
CHOI KY, 1994, CELL, V78, P499
[9]   Fus3-regulated Tec1 degradation throulah SCFCdc4 determines MAPK signaling specificity during mating in yeast [J].
Chou, S ;
Huang, L ;
Liu, HP .
CELL, 2004, 119 (07) :981-990
[10]  
Elion EA, 2001, J CELL SCI, V114, P3967