Multi-stage kernel-based conditional quantile prediction in time series

被引:2
作者
De Gooijer, JG
Gannoun, A
Zerom, D
机构
[1] Univ Amsterdam, Dept Econ Stat, NL-1018 WB Amsterdam, Netherlands
[2] Univ Montpellier 2, Lab Probabil & Stat, F-34095 Montpellier 5, France
[3] Univ Amsterdam, Tinbergen Inst, NL-1018 WB Amsterdam, Netherlands
关键词
conditional quantile; kernel; Markovian; mean squared error; multi-stage predictor; single-stage predictor; time series;
D O I
10.1081/STA-100108445
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a multi-stage conditional quantile predictor for time series of Markovian structure. It is proved that at any quantile level, p epsilon (0, 1), the asymptotic mean squared error (MSE) of the new predictor is smaller than the single-stage conditional quantile predictor. A simulation study confirms this result in a small sample situation. Because the improvement by the proposed predictor increases for quantiles at the tails of the conditional distribution function, the multi-stage predictor can be used to compute better predictive intervals with smaller variability. Applying this predictor to the changes in the U.S. short-term interest rate, rather smooth out-of-sample predictive intervals are obtained.
引用
收藏
页码:2499 / 2515
页数:17
相关论文
共 17 条
[1]  
[Anonymous], 1980, Approximations Theorems of Mathematical Statistics
[2]   Asymptotic normality of convergent estimates of conditional quantiles [J].
Berlinet, A ;
Gannoun, A ;
Matzner-Lober, E .
STATISTICS, 2001, 35 (02) :139-169
[3]  
CAI Z, 2001, IN PRESS ECONOMETRIC
[4]  
Chen R, 1996, STAT SINICA, V6, P603
[5]   ALMOST COMPLETE CONVERGENCE PROPERTIES OF THE KERNEL PREDICTOR [J].
COLLOMB, G .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 66 (03) :441-460
[6]   Nonparametric conditional predictive regions for time series [J].
Gooijer, Jan G.De ;
Gannoun, Ali .
Computational Statistics and Data Analysis, 2000, 33 (03) :259-275
[7]  
De Gooijer JG, 2000, J FORECASTING, V19, P335, DOI 10.1002/1099-131X(200007)19:4<335::AID-FOR777>3.3.CO
[8]  
2-V
[9]  
DEGOOIJER JG, 2001, IN PRESS STAT PROBAB
[10]  
Eubank R.L., 1988, SPLINE SMOOTHING NON