Oxidation energies of transition metal oxides within the GGA+U framework

被引:867
作者
Wang, Lei [1 ]
Maxisch, Thomas [1 ]
Ceder, Gerbrand [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
关键词
D O I
10.1103/PhysRevB.73.195107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The energy of a large number of oxidation reactions of 3d transition metal oxides is computed using the generalized gradient approach (GGA) and GGA+U methods. Two substantial contributions to the error in GGA oxidation energies are identified. The first contribution originates from the overbinding of GGA in the O-2 molecule and only occurs when the oxidant is O-2. The second error occurs in all oxidation reactions and is related to the correlation error in 3d orbitals in GGA. Strong self-interaction in GGA systematically penalizes a reduced state (with more d electrons) over an oxidized state, resulting in an overestimation of oxidation energies. The constant error in the oxidation energy from the O-2 binding error can be corrected by fitting the formation enthalpy of simple nontransition metal oxides. Removal of the O-2 binding error makes it possible to address the correlation effects in 3d transition metal oxides with the GGA+U method. Calculated oxidation energies agree well with experimental data for reasonable and consistent values of U.
引用
收藏
页数:6
相关论文
共 40 条
[1]   SOFT-X-RAY-ABSORPTION STUDIES OF THE ELECTRONIC-STRUCTURE CHANGES THROUGH THE VO2 PHASE-TRANSITION [J].
ABBATE, M ;
DEGROOT, FMF ;
FUGGLE, JC ;
MA, YJ ;
CHEN, CT ;
SETTE, F ;
FUJIMORI, A ;
UEDA, Y ;
KOSUGE, K .
PHYSICAL REVIEW B, 1991, 43 (09) :7263-7267
[2]   BAND THEORY AND MOTT INSULATORS - HUBBARD-U INSTEAD OF STONER-I [J].
ANISIMOV, VI ;
ZAANEN, J ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1991, 44 (03) :943-954
[3]   First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method [J].
Anisimov, VI ;
Aryasetiawan, F ;
Lichtenstein, AI .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (04) :767-808
[4]  
Baron V, 1998, AM MINERAL, V83, P786
[5]   ANTIFERROMAGNETIC STRUCTURE IN CR2O3 [J].
BROCKHOUSE, BN .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (05) :961-962
[6]   THE CRYSTAL STRUCTURE OF CHROMIUM TRIOXIDE [J].
BYSTROM, A ;
WILHELMI, KA .
ACTA CHEMICA SCANDINAVICA, 1950, 4 (07) :1131-1141
[7]   MAGNETIC-STRUCTURE OF V2O3 IN THE INSULATING PHASE [J].
CASTELLANI, C ;
NATOLI, CR ;
RANNINGER, J .
PHYSICAL REVIEW B, 1978, 18 (09) :4945-4966
[8]   HIGH-RESOLUTION PHOTOEMISSION SPECTROSCOPY OF THE VERWEY TRANSITION IN FE3O4 [J].
CHAINANI, A ;
YOKOYA, T ;
MORIMOTO, T ;
TAKAHASHI, T ;
TODO, S .
PHYSICAL REVIEW B, 1995, 51 (24) :17976-17979
[9]  
CHARDON B, 1986, J MAGN MAGN MATER, V58, P128, DOI 10.1016/0304-8853(86)90132-0
[10]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509