Solid-state single photon sources: the nanowire antenna

被引:204
作者
Friedler, I. [1 ]
Sauvan, C. [1 ]
Hugonin, J. P. [1 ]
Lalanne, P. [1 ]
Claudon, J. [2 ]
Gerard, J. M. [2 ]
机构
[1] Univ Paris Sud, Lab Charles Fabry, Inst Opt, CNRS, F-91127 Palaiseau, France
[2] Nanophys & Semicond Lab, CEA, INAC SP2M, F-38054 Grenoble, France
来源
OPTICS EXPRESS | 2009年 / 17卷 / 04期
关键词
QUANTUM DOTS; SPONTANEOUS-EMISSION; OPTICAL-FIBER; WAVE-GUIDES;
D O I
10.1364/OE.17.002095
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We design several single-photon-sources based on the emission of a quantum dot embedded in a semiconductor (GaAs) nanowire. Through various taper designs, we engineer the nanowire ends to realize efficient metallic-dielectric mirrors and to reduce the divergence of the far-field radiation diagram. Using fully-vectorial calculations and a comprehensive Fabry-Perot model, we show that various realistic nanowire geometries may act as nanoantennas (volume of approximate to 0.05 lambda(3)) that assist funnelling the emitted photons into a single monomode channel. Typically, very high extraction efficiencies above 90% are predicted for a collection optics with a numerical aperture NA=0.85. In addition, since no frequency-selective effect is used in our design, this large efficiency is achieved over a remarkably broad spectral range, Delta lambda=70 nm at lambda= 950 nm. (C) 2009 Optical Society of America
引用
收藏
页码:2095 / 2110
页数:16
相关论文
共 63 条
[1]   Optical antennas based on coupled nanoholes in thin metal films [J].
Alaverdyan, Y. ;
Sepulveda, B. ;
Eurenius, L. ;
Olsson, E. ;
Kall, M. .
NATURE PHYSICS, 2007, 3 (12) :884-889
[2]   Nanotaper for compact mode conversion [J].
Almeida, VR ;
Panepucci, RR ;
Lipson, M .
OPTICS LETTERS, 2003, 28 (15) :1302-1304
[3]   Deterministic coupling of single quantum dots to single nanocavity modes [J].
Badolato, A ;
Hennessy, K ;
Atatüre, M ;
Dreiser, J ;
Hu, E ;
Petroff, PM ;
Imamoglu, A .
SCIENCE, 2005, 308 (5725) :1158-1161
[4]   Solid-state single photon sources:: light collection strategies [J].
Barnes, WL ;
Björk, G ;
Gérard, JM ;
Jonsson, P ;
Wasey, JAE ;
Worthing, PT ;
Zwiller, V .
EUROPEAN PHYSICAL JOURNAL D, 2002, 18 (02) :197-210
[5]   QUANTUM CRYPTOGRAPHY [J].
BENNETT, CH ;
BRASSARD, G ;
EKERT, AK .
SCIENTIFIC AMERICAN, 1992, 267 (04) :50-57
[6]   Differential theory of diffraction by finite cylindrical objects [J].
Bonod, N ;
Popov, E ;
Nevière, M .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2005, 22 (03) :481-490
[7]  
Borgström MT, 2005, NANO LETT, V5, P1439, DOI 10.1021/nl050802y
[8]   Limitations on practical quantum cryptography [J].
Brassard, G ;
Lütkenhaus, N ;
Mor, T ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2000, 85 (06) :1330-1333
[9]   Photon antibunching in the fluorescence of individual color centers in diamond [J].
Brouri, R ;
Beveratos, A ;
Poizat, JP ;
Grangier, P .
OPTICS LETTERS, 2000, 25 (17) :1294-1296
[10]   Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities [J].
Chang, WH ;
Chen, WY ;
Chang, HS ;
Hsieh, TP ;
Chyi, JI ;
Hsu, TM .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)