Silent synapses in developing cerebellar granule neurons

被引:47
作者
Losi, G
Prybylowski, K
Fu, ZY
Luo, JH
Vicini, S
机构
[1] Georgetown Univ, Sch Med, Dept Physiol, Washington, DC 20007 USA
[2] Georgetown Univ, Sch Med, Dept Biophys, Washington, DC 20007 USA
关键词
D O I
10.1152/jn.00633.2001
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Silent synapses are excitatory synapses endowed exclusively with N-methyl-D-aspartate (NMDA) responses that have been proposed to acquire alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) responses during development and after long-term potentiation (LTP). These synapses are functionally silent because of the Mg2+ block of NMDA receptors at resting potentials. Here we provide evidence for the presence of silent synapses in developing cerebellar granule cells. Using the patch-clamp technique in the whole-cell configuration, we recorded the spontaneous excitatory postsynaptic currents (sEPSCs) from rat cerebellar granule cells in culture and in slices at physiological concentration of Mg2+ (1 mM). A holding potential of +60 mV removes Mg2+ block of NMDA channels, allowing us to record NMDA-sEPSCs. We thus compared the frequency of AMPA-sEPSCs, recorded at -60 mV, with that of NMDA-sEPSCs, recorded at +60 mV. NMDA-sEPSCs occurred at higher frequency than the AMPA-sEPSCs in most cells recorded in slices from rats at postnatal day (P) <13 and in culture at 6-8 days after plating (DIV6-8). In a few cells from young rats (P6-9) and in most neurons in culture at DIV6 we recorded exclusively NMDA-sEPSCs, supporting the hypothesis of existence of functional synapses with NMDA and without AMPA receptors. Increasing glutamate release in the slice with cyclothiazide and temperature increased AMPA and NMDA-sEPSCs frequencies but failed to alter the relative ratio of frequency of occurrence. Frequency ratio of NMDA versus AMPA-sEPSCs in slices was correlated with the weighted time constant of decay (tau(w)) of NMDA-sEPSCs and decreased with development along the reported decrease of tau(w). We suggest that the prevalence of synaptic NR2A subunits that confer faster kinetics is paralleled by the disappearance of silent synapses early in cerebellar development.
引用
收藏
页码:1263 / 1270
页数:8
相关论文
共 45 条
[1]  
Altman J., 1982, CEREBELLUM NEW VISTA, V6, P8
[2]   NMDAR EPSC kinetics do not regulate the critical period for LTP at thalamocortical synapses [J].
Barth, AL ;
Malenka, RC .
NATURE NEUROSCIENCE, 2001, 4 (03) :235-236
[3]   Developmental profile of the changing properties of NMDA receptors at cerebellar mossy fiber-granule cell synapses [J].
Cathala, L ;
Misra, C ;
Cull-Candy, S .
JOURNAL OF NEUROSCIENCE, 2000, 20 (16) :5899-5905
[4]   Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse [J].
Chavis, P ;
Westbrook, G .
NATURE, 2001, 411 (6835) :317-321
[5]   Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms [J].
Chen, L ;
Chetkovich, DM ;
Petralia, RS ;
Sweeney, NT ;
Kawasaki, Y ;
Wenthold, RJ ;
Bredt, DS ;
Nicoll, RA .
NATURE, 2000, 408 (6815) :936-943
[6]   Changes in agonist concentration dependence that are a function of duration of exposure suggest N-methyl-D-aspartate receptor nonsaturation during synaptic stimulation [J].
Chen, NS ;
Ren, JH ;
Raymond, LA ;
Murphy, TH .
MOLECULAR PHARMACOLOGY, 2001, 59 (02) :212-219
[7]   Postfusional regulation of cleft glutamate concentration during LTP at 'silent synapses' [J].
Choi, S ;
Klingauf, J ;
Tsien, RW .
NATURE NEUROSCIENCE, 2000, 3 (04) :330-336
[8]   NMDA receptor subunits: diversity, development and disease [J].
Cull-Candy, S ;
Brickley, S ;
Farrant, M .
CURRENT OPINION IN NEUROBIOLOGY, 2001, 11 (03) :327-335
[9]   Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum [J].
D'Angelo, E ;
Rossi, P ;
Armano, S ;
Taglietti, V .
JOURNAL OF NEUROPHYSIOLOGY, 1999, 81 (01) :277-287
[10]   DIFFERENT PROPORTIONS OF N-METHYL-D-ASPARTATE AND NON-N-METHYL-D-ASPARTATE RECEPTOR CURRENTS AT THE MOSSY FIBER GRANULE CELL SYNAPSE OF DEVELOPING RAT CEREBELLUM [J].
DANGELO, E ;
ROSSI, P ;
TAGLIETTI, V .
NEUROSCIENCE, 1993, 53 (01) :121-130