On the ultraviolet behavior of quantum fields over noncommutative manifolds

被引:75
作者
Várilly, JC
Gracia-Bondía, JM
机构
[1] Univ Costa Rica, Dept Math, San Pedro 2060, Costa Rica
[2] Univ Costa Rica, Dept Phys, San Pedro 2060, Costa Rica
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 1999年 / 14卷 / 08期
关键词
D O I
10.1142/S0217751X99000671
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
By exploiting the relation between Fredholm modules and the Segal-Shale-Stinespring version of canonical quantization, and taking as starting paint the first-quantized fields described by Connes' axioms for noncommutative spin geometries, a Hamiltonian framework for fermion quantum fields over noncommutative manifolds is introduced. We analyze the ultraviolet behavior of second-quantized fields over noncommutative three-tori, and discuss what behavior should be expected on other noncommutative spin manifolds.
引用
收藏
页码:1305 / 1323
页数:19
相关论文
共 52 条
[1]  
[Anonymous], 1986, FUNDAMENTALS THEORY
[2]  
[Anonymous], 1990, Geometrie non commutative
[3]  
[Anonymous], 1984, INSTANTONS 4 MANIFOL
[4]  
ARAKI H, 1987, CONT MATH, V62, P23
[5]  
ARAKI H, 1988, QUANTUM THEORIES GEO, P1
[6]  
Baez J., 1992, INTRO ALGEBRAIC CONS
[7]   OKA PRINCIPLE, K-THEORY AND NONCOMMUTATIVE DYNAMIC-SYSTEMS [J].
BOST, JB .
INVENTIONES MATHEMATICAE, 1990, 101 (02) :261-333
[8]  
Cipriani F., 1996, J. Operator Theory, V35, P179
[9]  
Connes A, 1998, J HIGH ENERGY PHYS
[10]   Hopf algebras, cyclic cohomology and the transverse index theorem [J].
Connes, A ;
Moscovici, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 198 (01) :199-246