Science and technology of nanomaterials: current status and future prospects

被引:482
作者
Rao, CNR [1 ]
Cheetham, AK
机构
[1] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA
[2] Jawaharlal Nehru Ctr Adv Sci Res, Chem & Phys Mat Unit, Bangalore 560064, Karnataka, India
关键词
D O I
10.1039/b105058n
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The science and technology of nanomaterials has created great excitement and expectations in the last few years. By its very nature, the subject is of immense academic interest, having to do with very tiny objects in the nanometer regime. There has already been much progress in the synthesis, assembly and fabrication of nanomaterials, and, equally importantly, in the potential applications of these materials in a wide variety of technologies. The next decade is likely to witness major strides in the preparation, characterization and exploitation of nanoparticles, nanotubes and other nanounits, and their assemblies. In addition, there will be progress in the discovery and commercialization of nanotechnologies and devices. These new technologies are bound to have an impact on the chemical, energy, electronics and space industries. They will also have applications in medicine and health care, drug and gene delivery being important areas. This article examines the important facets of nanomaterials research, highlighting the current trends and future directions. Since synthesis, structure, properties and simulation are important ingredients of nanoscience, materials chemists have a major role to play.
引用
收藏
页码:2887 / 2894
页数:8
相关论文
共 84 条
  • [1] Organization of 'nanocrystal molecules' using DNA
    Alivisatos, AP
    Johnsson, KP
    Peng, XG
    Wilson, TE
    Loweth, CJ
    Bruchez, MP
    Schultz, PG
    [J]. NATURE, 1996, 382 (6592) : 609 - 611
  • [2] Mesoporous materials
    Antonelli, DM
    Ying, JY
    [J]. CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 1996, 1 (04) : 523 - 529
  • [3] Aviram A., 1998, Molecular Electronics - Science and Technology
  • [4] Biosensor based on force microscope technology
    Baselt, DR
    Lee, GU
    Colton, RJ
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (02): : 789 - 793
  • [5] BREAKING THE DIFFRACTION BARRIER - OPTICAL MICROSCOPY ON A NANOMETRIC SCALE
    BETZIG, E
    TRAUTMAN, JK
    HARRIS, TD
    WEINER, JS
    KOSTELAK, RL
    [J]. SCIENCE, 1991, 251 (5000) : 1468 - 1470
  • [6] Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices
    Black, CT
    Murray, CB
    Sandstrom, RL
    Sun, SH
    [J]. SCIENCE, 2000, 290 (5494) : 1131 - 1134
  • [7] DNA-templated assembly and electrode attachment of a conducting silver wire
    Braun, E
    Eichen, Y
    Sivan, U
    Ben-Yoseph, G
    [J]. NATURE, 1998, 391 (6669) : 775 - 778
  • [8] Thin-film crystalline SnO2-lithium electrodes
    Brousse, T
    Retoux, R
    Herterich, U
    Schleich, DM
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) : 1 - 4
  • [9] Semiconductor nanocrystals as fluorescent biological labels
    Bruchez, M
    Moronne, M
    Gin, P
    Weiss, S
    Alivisatos, AP
    [J]. SCIENCE, 1998, 281 (5385) : 2013 - 2016