Defective Insulin Signaling Pathway and Increased Glycogen Synthase Kinase-3 Activity in the Brain of Diabetic Mice: Parallels With Alzheimer's Disease and Correction by Insulin

被引:229
作者
Jolivalt, C. G. [1 ]
Lee, C. A. [1 ]
Beiswenger, K. K. [1 ]
Smith, J. L. [1 ]
Orlov, M. [1 ]
Torrance, M. A. [2 ]
Masliah, E. [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept Pathol, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Neurosci, La Jolla, CA 92093 USA
关键词
brain; diabetes; insulin pathway; tau; amyloid beta;
D O I
10.1002/jnr.21787
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We have evaluated the effect of peripheral insulin deficiency on brain insulin pathway activity in a mouse model of type 1 diabetes, the parallels with Alzheimer's disease (AD), and the effect of treatment with insulin. Nine weeks of insulin-deficient diabetes significantly impaired the learning capacity of mice, significantly reduced insulin-degrading enzyme protein expression, and significantly reduced phosphorylation of the insulin-receptor and AKT. Phosphorylation of glycogen synthase kinase-3 (GSK3) was also significantly decreased, indicating increased GSK3 activity. This evidence of reduced insulin signaling was associated with a concomitant increase in tau phosphorylation and amyloid beta protein levels. Changes in phosphorylation levels of insulin receptor, GSK3, and tau were not observed in the brain of db/db mice, a model of type 2 diabetes, after a similar duration (8 weeks) of diabetes. Treatment with insulin from onset of diabetes partially restored the phosphorylation of insulin receptor and of GSK3, partially reduced the level of phosphorylated tau in the brain, and partially improved learning ability in insulin-deficient diabetic mice. Our data indicate that mice with systemic insulin deficiency display evidence of reduced insulin signaling pathway activity in the brain that is associated with biochemical and behavioral features of AD and that it can be corrected by insulin treatment. (C) 2008 Wiley-Liss, Inc.
引用
收藏
页码:3265 / 3274
页数:10
相关论文
共 57 条
[1]   MRI OF THE BRAIN IN DIABETES-MELLITUS [J].
ARAKI, Y ;
NOMURA, M ;
TANAKA, H ;
YAMAMOTO, H ;
YAMAMOTO, T ;
TSUKAGUCHI, I ;
NAKAMURA, H .
NEURORADIOLOGY, 1994, 36 (02) :101-103
[2]   MEMORY DEFICITS ASSOCIATED WITH SENESCENCE - NEUROPHYSIOLOGICAL AND BEHAVIORAL-STUDY IN THE RAT [J].
BARNES, CA .
JOURNAL OF COMPARATIVE AND PHYSIOLOGICAL PSYCHOLOGY, 1979, 93 (01) :74-104
[3]   Cognition and diabetes: a lifespan perspective [J].
Biessels, Geert Jan ;
Deary, Ian J. ;
Ryan, Christopher M. .
LANCET NEUROLOGY, 2008, 7 (02) :184-190
[4]   Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment [J].
Biessels, GJ ;
Kamal, A ;
Urban, IJA ;
Spruijt, BM ;
Erkelens, DW ;
Gispen, WH .
BRAIN RESEARCH, 1998, 800 (01) :125-135
[5]   Place learning and hippocampal synaptic plasticity in streptozotocin-Induced diabetic rats [J].
Biessels, GJ ;
Kamal, A ;
Ramakers, GM ;
Urban, IJ ;
Spruijt, BM ;
Erkelens, DW ;
Gispen, WH .
DIABETES, 1996, 45 (09) :1259-1266
[6]   The effects of type 1 diabetes on cognitive performance - A meta-analysis [J].
Brands, AMA ;
Biessels, GJ ;
De Haan, EHF ;
Kappelle, LJ ;
Kessels, RPC .
DIABETES CARE, 2005, 28 (03) :726-735
[7]   Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3β (GSK3β) plays a critical role in regulating tau's ability to bind and stabilize microtubules [J].
Cho, JH ;
Johnson, GVW .
JOURNAL OF NEUROCHEMISTRY, 2004, 88 (02) :349-358
[8]   Molecular connexions between dementia and diabetes [J].
Cole, Adam R. ;
Astell, Arlene ;
Green, Charlotte ;
Sutherland, Calum .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2007, 31 (07) :1046-1063
[9]   Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer's disease is associated with the apolipoprotein E-ε4 allele [J].
Cook, DG ;
Leverenz, JB ;
McMillan, PJ ;
Kulstad, JJ ;
Ericksen, S ;
Roth, RA ;
Schellenberg, GD ;
Jin, LW ;
Kovacina, KS ;
Craft, S .
AMERICAN JOURNAL OF PATHOLOGY, 2003, 162 (01) :313-319
[10]   INHIBITION OF GLYCOGEN-SYNTHASE KINASE-3 BY INSULIN-MEDIATED BY PROTEIN-KINASE-B [J].
CROSS, DAE ;
ALESSI, DR ;
COHEN, P ;
ANDJELKOVICH, M ;
HEMMINGS, BA .
NATURE, 1995, 378 (6559) :785-789