Isolation of antibiotic resistance mutations in the rRNA by using an in vitro selection system

被引:36
作者
Cochella, L [1 ]
Green, R [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Howard Hughes Med Inst, Dept Mol Biol & Genet, Baltimore, MD 21205 USA
关键词
D O I
10.1073/pnas.0307596101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genetic, biochemical, and structural data support an essential role for the ribosomal RNA in all steps of the translation process. Although in vivo genetic selection techniques have been used to identify mutations in the rRNIAs that result in various miscoding phenotypes and resistance to known ribosome-targeted antibiotics, these are limited because the resulting mutant ribosomes must be only marginally disabled if they are able to support growth of the cell. Furthermore, in vivo, it is not possible to control the environment in precise ways that might allow for the isolation of certain types of rRNIA variants. To overcome these limitations, we have developed an in vitro selection system for the isolation of functionally competent ribosomal particles from populations containing variant rRNAs. Here, we describe this system and present an example of its application to the selection of antibiotic resistance mutations. From a pool of 4,096 23S rRNA variants, a double mutant (A2058U/A2062G) was isolated after iteration of the selection process. This mutant was highly resistant to clindamycin in in vitro translation reactions and yet was not viable in Escherichia coli. These data establish that this system has the potential to identify mutations in the rRNA not readily accessed by comparable in vivo systems, thus allowing for more exhaustive ribosomal genetic screens.
引用
收藏
页码:3786 / 3791
页数:6
相关论文
共 49 条
[1]   An Escherichia coli strain with all chromosomal rRNA operons inactivated:: Complete exchange of rRNA genes between bacteria [J].
Asai, T ;
Zaporojets, D ;
Squires, C ;
Squires, CL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (05) :1971-1976
[2]   The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution [J].
Ban, N ;
Nissen, P ;
Hansen, J ;
Moore, PB ;
Steitz, TA .
SCIENCE, 2000, 289 (5481) :905-920
[3]   Ribbons [J].
Carson, M .
MACROMOLECULAR CRYSTALLOGRAPHY, PT B, 1997, 277 :493-505
[4]   A COLD-SENSITIVE MUTATION IN 16S RIBOSOMAL-RNA PROVIDES EVIDENCE FOR HELICAL SWITCHING IN RIBOSOME ASSEMBLY [J].
DAMMEL, CS ;
NOLLER, HF .
GENES & DEVELOPMENT, 1993, 7 (04) :660-670
[5]   SUPPRESSION OF A COLD-SENSITIVE MUTATION IN 16S RIBOSOMAL-RNA BY OVEREXPRESSION OF A NOVEL RIBOSOME-BINDING FACTOR, RBFA [J].
DAMMEL, CS ;
NOLLER, HF .
GENES & DEVELOPMENT, 1995, 9 (05) :626-637
[6]   Mutation in 23S rRNA responsible for resistance to 16-membered macrolides and streptogramins in Streptococcus pneumoniae [J].
Depardieu, F ;
Courvalin, P .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2001, 45 (01) :319-323
[7]   DEFINING THE STRUCTURAL REQUIREMENTS FOR A HELIX IN 23-S RIBOSOMAL-RNA THAT CONFERS ERYTHROMYCIN RESISTANCE [J].
DOUTHWAITE, S ;
POWERS, T ;
LEE, JY ;
NOLLER, HF .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 209 (04) :655-665
[8]   FEEDBACK-REGULATION OF RIBOSOMAL-RNA AND TRANSFER-RNA SYNTHESIS AND ACCUMULATION OF FREE RIBOSOMES AFTER CONDITIONAL EXPRESSION OF RIBOSOMAL-RNA GENES [J].
GOURSE, RL ;
TAKEBE, Y ;
SHARROCK, RA ;
NOMURA, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (04) :1069-1073
[9]   Reconstitution of functional 50S ribosomes from in vitro transcripts of Bacillus stearothermophilus 23S rRNA [J].
Green, R ;
Noller, HF .
BIOCHEMISTRY, 1999, 38 (06) :1772-1779
[10]  
Green R, 1996, RNA, V2, P1011