Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation

被引:67
作者
Reis, DS
Stedinger, JR
Martins, ES
机构
[1] Fdn Cearense Meteorol & Recursos Hidricos, Water Resources Dept, Fortaleza, Ceara, Brazil
[2] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA
关键词
D O I
10.1029/2004WR003445
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper develops a Bayesian approach to analysis of a generalized least squares (GLS) regression model for regional analyses of hydrologic data. The new approach allows computation of the posterior distributions of the parameters and the model error variance using a quasi-analytic approach. Two regional skew estimation studies illustrate the value of the Bayesian GLS approach for regional statistical analysis of a shape parameter and demonstrate that regional skew models can be relatively precise with effective record lengths in excess of 60 years. With Bayesian GLS the marginal posterior distribution of the model error variance and the corresponding mean and variance of the parameters can be computed directly, thereby providing a simple but important extension of the regional GLS regression procedures popularized by Tasker and Stedinger ( 1989), which is sensitive to the likely values of the model error variance when it is small relative to the sampling error in the at-site estimator.
引用
收藏
页码:W10419 / 1
页数:14
相关论文
共 83 条
[1]  
Aitken A., 1934, Proceedings of Royal Statistical Society, V55, P42, DOI [DOI 10.1017/S0370164600014346, 10.1017/S0370164600014346]
[2]   SYNTHETIC HYDROLOGY BASED ON REGIONAL STATISTICAL PARAMETERS [J].
BENSON, MA ;
MATALAS, NC .
WATER RESOURCES RESEARCH, 1967, 3 (04) :931-&
[3]  
BERGER J. O., 2013, Statistical Decision Theory and Bayesian Analysis, DOI [10.1007/978-1-4757-4286-2, DOI 10.1007/978-1-4757-4286-2]
[4]   Spatial Poisson regression for health and exposure data measured at disparate resolutions [J].
Best, NG ;
Ickstadt, K ;
Wolpert, RL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (452) :1076-1088
[5]  
Bickel P. J., 1977, MATH STAT BASIC IDEA
[6]  
Bobee B, 1996, J HYDROL, V186, P63
[7]  
Bobee B, 1996, J HYDROL, V186, P85
[8]  
Congdon P, 2006, BAYESIAN STAT MODELL
[9]   Likelihood ratio tests in linear mixed models with one variance component [J].
Crainiceanu, CM ;
Ruppert, D .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 :165-185
[10]   METHODS AND MERITS OF REGIONAL FLOOD FREQUENCY-ANALYSIS [J].
CUNNANE, C .
JOURNAL OF HYDROLOGY, 1988, 100 (1-3) :269-290