Semiclassical approximation for Chern-Simons theory and 3-hyperbolic invariants

被引:8
作者
Bytsenko, AA
Vanzo, L
Zerbini, S
机构
[1] Univ Estadual Londrina, Dept Fis, Londrina Parana, Brazil
[2] Univ Trent, Dipartimento Fis, I-38100 Trent, Italy
[3] Ist Nazl Fis Nucl, Grp Collegato Trento, I-38050 Trent, Italy
关键词
D O I
10.1016/S0370-2693(99)00721-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The invariant integration method for Chern-Simons theory defined on the compact hyperbolic manifold Gamma\H-3 is verified in the semiclassical approximation. The semiclassical limit for the partition function is presented. We discuss briefly L-2-analytic torsion and the eta invariant of Atiyah-Patodi-Singer for compact hyperbolic 3-manifolds. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:535 / 539
页数:5
相关论文
共 25 条
[1]  
Adams DH, 1998, PHYS LETT B, V417, P53, DOI 10.1016/S0370-2693(97)01343-9
[2]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .2. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 78 (NOV) :405-432
[3]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .3. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :71-99
[4]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .1. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (JAN) :43-69
[5]  
AXELROD S, 1994, J DIFFER GEOM, V39, P173
[6]   Torsion on hyperbolic manifolds and the semiclassical limit for Chern-Simons theory [J].
Bytsenko, AA ;
Goncalves, AE ;
Da Cruz, W .
MODERN PHYSICS LETTERS A, 1998, 13 (30) :2453-2461
[7]   Ray-Singer torsion for a hyperbolic 3-manifold and asymptotics of Chern-Simons-Witten invariant [J].
Bytsenko, AA ;
Vanzo, L ;
Zerbini, S .
NUCLEAR PHYSICS B, 1997, 505 (03) :641-659
[8]   Quantum fields and extended objects in space-times with constant curvature spatial section [J].
Bytsenko, AA ;
Cognola, G ;
Vanzo, L ;
Zerbini, S .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 266 (1-2) :1-126
[9]   THE SELBERG TRACE FORMULA AND THE RUELLE ZETA-FUNCTION FOR COMPACT HYPERBOLICS [J].
DEITMAR, A .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1989, 59 :101-106
[10]   TOPOLOGICAL GAUGE-THEORIES AND GROUP COHOMOLOGY [J].
DIJKGRAAF, R ;
WITTEN, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 129 (02) :393-429